Wiren Board 5:Аппаратная часть: различия между версиями

Отметить эту версию для перевода
(Отметить эту версию для перевода)
Строка 2: Строка 2:
<translate>
<translate>


<!--T:289-->
[[File:WB4-2.png| thumb | 500px|Wiren Board 4]]
[[File:WB4-2.png| thumb | 500px|Wiren Board 4]]




==Технические характеристики==
==Технические характеристики==   <!--T:290-->
[[File:WB4.png| thumb | 500px|Wiren Board 4]]
[[File:WB4.png| thumb | 500px|Wiren Board 4]]


<!--T:291-->
{|  border="1" width="45%" class="wikitable" style="text-align:center"
{|  border="1" width="45%" class="wikitable" style="text-align:center"
!colspan="2" | '''ПО'''  
!colspan="2" | '''ПО'''  
Строка 23: Строка 25:




<!--T:292-->
!colspan="2" | '''Беспроводные интерфейсы'''  
!colspan="2" | '''Беспроводные интерфейсы'''  
|-
|-
Строка 40: Строка 43:




<!--T:293-->
!colspan="2"| '''Проводные интерфейсы'''  
!colspan="2"| '''Проводные интерфейсы'''  
|-
|-
Строка 68: Строка 72:




<!--T:294-->
!colspan="2"| '''Выходы'''  
!colspan="2"| '''Выходы'''  
|-
|-
Строка 88: Строка 93:




<!--T:295-->
!colspan="2"| '''Питание'''  
!colspan="2"| '''Питание'''  
|-
|-
Строка 107: Строка 113:
|}
|}


== Клеммники ==  
== Клеммники == <!--T:296-->
[[Файл:WB5inputs.png|thumb|401px|Схема защиты входов и выходов]]
[[Файл:WB5inputs.png|thumb|401px|Схема защиты входов и выходов]]




<!--T:297-->
Часть клеммников может выполнять более одной функции - смотрите описание входов/выходов и статью [[Special:MyLanguage/Мультиплексирование портов|Мультиплексирование портов]].
Часть клеммников может выполнять более одной функции - смотрите описание входов/выходов и статью [[Special:MyLanguage/Мультиплексирование портов|Мультиплексирование портов]].




<!--T:298-->
{|  border="1" width="45%" class="wikitable" style="text-align:center"
{|  border="1" width="45%" class="wikitable" style="text-align:center"
|  
|  
Строка 173: Строка 181:
|}
|}


== Защита входов ==  
== Защита входов == <!--T:299-->
#Защита всех входов от подачи напряжения питания (до 28 В) и импульсных помех.
#Защита всех входов от подачи напряжения питания (до 28 В) и импульсных помех.
#Защита от переполюсовки питания.
#Защита от переполюсовки питания.
#Диодная защита ключей на входах Ax от индуктивной нагрузки.
#Диодная защита ключей на входах Ax от индуктивной нагрузки.


== Универсальные входы/выходы A1-A4==  
== Универсальные входы/выходы A1-A4== <!--T:300-->
[[Файл:Ax2.png|thumb|400px|Эквивалентная схема каналов A1-A4]]
[[Файл:Ax2.png|thumb|400px|Эквивалентная схема каналов A1-A4]]


<!--T:301-->
Универсальные каналы состоят из  
Универсальные каналы состоят из  
параллельно работающих входного и выходного каскада, а также защитных диодов
параллельно работающих входного и выходного каскада, а также защитных диодов
(подключенных к одной клемме канала).
(подключенных к одной клемме канала).


<!--T:302-->
Выходной каскад состоит из коммутирующего элемента Tx.
Выходной каскад состоит из коммутирующего элемента Tx.
Ключ Tx, замыкает выходы на землю.
Ключ Tx, замыкает выходы на землю.
Строка 190: Строка 200:
контроллера, ключ Tx может находиться в 2-ух состояниях:
контроллера, ключ Tx может находиться в 2-ух состояниях:


<!--T:303-->
*Активное (замкнут);на выход канала подается 0.
*Активное (замкнут);на выход канала подается 0.


<!--T:304-->
*Неактивное (разомкнут, высокий импеданс).
*Неактивное (разомкнут, высокий импеданс).
Такой тип выхода называется "открытый коллектор".
Такой тип выхода называется "открытый коллектор".


<!--T:305-->
Для каналов Ax входной каскад образуют аналогово-цифрового преобразователь ADCx и входное сопротивление Rx (100кОм) .
Для каналов Ax входной каскад образуют аналогово-цифрового преобразователь ADCx и входное сопротивление Rx (100кОм) .
Преобразователь ADCx имеет высокое входное сопротивление, он подключен постоянно и не влияет  
Преобразователь ADCx имеет высокое входное сопротивление, он подключен постоянно и не влияет  
Строка 202: Строка 215:
"притянет" входное напряжение к 0 питания и преобразователь ADCx считает напряжение 0.
"притянет" входное напряжение к 0 питания и преобразователь ADCx считает напряжение 0.


<!--T:306-->
Так же для каналов Аx есть функция бинарного входа DI - напряжение на клемме больше 3В контроллер воспринимает как логическую единицу (срабатывание входа), меньше 1,5В - как логический ноль.
Так же для каналов Аx есть функция бинарного входа DI - напряжение на клемме больше 3В контроллер воспринимает как логическую единицу (срабатывание входа), меньше 1,5В - как логический ноль.


== Резистивные входы R1 и R2 ==  
== Резистивные входы R1 и R2 == <!--T:307-->
[[Файл:Rx.png|thumb|400px|Эквивалентная схема каналов Rx]]
[[Файл:Rx.png|thumb|400px|Эквивалентная схема каналов Rx]]


<!--T:308-->
В режиме по-умолчанию, каждая клемма подключена к внутреннему  регулируемому источнику тока.
В режиме по-умолчанию, каждая клемма подключена к внутреннему  регулируемому источнику тока.
Контроллер подаёт заданный ток на вход, и измеряет при этом на нём напряжение.
Контроллер подаёт заданный ток на вход, и измеряет при этом на нём напряжение.
Из известных значений тока и напряжения, ПО контроллера вычисляет сопротивление, подключенное к входу.
Из известных значений тока и напряжения, ПО контроллера вычисляет сопротивление, подключенное к входу.


<!--T:309-->
Каждый вход также [[ADC#Измерение сопротивлений|можно перевести]] в режим обычного аналогового входа в настройках.
Каждый вход также [[ADC#Измерение сопротивлений|можно перевести]] в режим обычного аналогового входа в настройках.
В этом режиме источник тока отключен и вход измеряет напряжение в диапазоне 0-3.0В.
В этом режиме источник тока отключен и вход измеряет напряжение в диапазоне 0-3.0В.


<!--T:310-->
Входы R1-R2 также работают как бинарные входы.  
Входы R1-R2 также работают как бинарные входы.  


<!--T:311-->
При включенном источнике тока (режим по-умолчанию) вход оказывается подтянут к питанию.  
При включенном источнике тока (режим по-умолчанию) вход оказывается подтянут к питанию.  
Если к входу ничего не подключено, то это состояние воспринимается как логическая единица.  
Если к входу ничего не подключено, то это состояние воспринимается как логическая единица.  
Строка 221: Строка 239:
Внешние кнопки, датчики и т.д. в этом режиме нужно подключать между клеммником Rx и GND.
Внешние кнопки, датчики и т.д. в этом режиме нужно подключать между клеммником Rx и GND.


<!--T:312-->
В альтернативном режиме, при выключенном источнике тока, вход подтянут к земле.  
В альтернативном режиме, при выключенном источнике тока, вход подтянут к земле.  
Логический ноль соответствует входу, к которому ничего не подключено; логическая единица - входу, на которое подаётся напряжение > 3В.
Логический ноль соответствует входу, к которому ничего не подключено; логическая единица - входу, на которое подаётся напряжение > 3В.
Внешние кнопки, датчики и т.д. в этом режиме нужно подключать между клеммником Rx и клеммником 5V out, либо плюсом питания.
Внешние кнопки, датчики и т.д. в этом режиме нужно подключать между клеммником Rx и клеммником 5V out, либо плюсом питания.


== 1-Wire и +5V ==
== 1-Wire и +5V == <!--T:313-->
1-Wire - шина для подключения внешних датчиков по двум (или трём) проводам. Так как это шина, можно подключить несколько устройств на один порт 1-Wire.  
1-Wire - шина для подключения внешних датчиков по двум (или трём) проводам. Так как это шина, можно подключить несколько устройств на один порт 1-Wire.  


<!--T:314-->
Для питания датчиков удобно использовать выход +5V.  
Для питания датчиков удобно использовать выход +5V.  


<!--T:315-->
Он защищен от КЗ и подачи повышенного напряжения. При питании контроллера от аккумулятора выход +5V остается активным.
Он защищен от КЗ и подачи повышенного напряжения. При питании контроллера от аккумулятора выход +5V остается активным.
Так же есть программное управление этим выходом (его можно отключать).
Так же есть программное управление этим выходом (его можно отключать).


== Модули ввода-вывода ==
== Модули ввода-вывода == <!--T:316-->
Модули ввода-вывода стыкуются с боковым разъемом на WB5 с правой стороны.
Модули ввода-вывода стыкуются с боковым разъемом на WB5 с правой стороны.


<!--T:317-->
Последовательно можно подключать до 8 модулей: до 4 модулей ввода (типа I) и до 4-х модуля вывода (типа O и IO). WB5 автоматически обнаруживает подключенный модуль и его тип. Адреса раздаются последовательно. Подключать до 4 модулей можно в любой последовательности. При большем числе следует подключать сначала один тип, потом другой.
Последовательно можно подключать до 8 модулей: до 4 модулей ввода (типа I) и до 4-х модуля вывода (типа O и IO). WB5 автоматически обнаруживает подключенный модуль и его тип. Адреса раздаются последовательно. Подключать до 4 модулей можно в любой последовательности. При большем числе следует подключать сначала один тип, потом другой.


<!--T:318-->
Описание модулей можно прочитать в статье "[[Модули ввода-вывода]]".
Описание модулей можно прочитать в статье "[[Модули ввода-вывода]]".


== Модули расширения ==  
== Модули расширения == <!--T:319-->
На плате контроллера расположены два разъема для подключения модулей расширения.
На плате контроллера расположены два разъема для подключения модулей расширения.
На каждый модуль отводится 3 клеммника.
На каждый модуль отводится 3 клеммника.


<!--T:320-->
Платы расширения вставляются вертикально. При сборке в корпус платы прижимаются с двух сторон и надежно фиксируются.  
Платы расширения вставляются вертикально. При сборке в корпус платы прижимаются с двух сторон и надежно фиксируются.  


<!--T:321-->
См. соответствующие статьи для описания подключения и работы в ПО:
См. соответствующие статьи для описания подключения и работы в ПО:


<!--T:322-->
[[Модули расширения]]
[[Модули расширения]]


== Питание ==
== Питание == <!--T:323-->
[[File:WB5 power distribution block diagram.png|thumb|400px|Блок-схема питания Wiren Board 5]]
[[File:WB5 power distribution block diagram.png|thumb|400px|Блок-схема питания Wiren Board 5]]


=== От внешнего блока питания ===  
=== От внешнего блока питания === <!--T:324-->
Допустимый диапазон питания 7-28В.  
Допустимый диапазон питания 7-28В.  
Среднее потребление платы - 1,5-2 Вт. Но т.к. модуль GSM потребляет импульсно до 8 Вт, рекомендуется использовать блоки питания с мощностью не менее 10 Вт.
Среднее потребление платы - 1,5-2 Вт. Но т.к. модуль GSM потребляет импульсно до 8 Вт, рекомендуется использовать блоки питания с мощностью не менее 10 Вт.


<!--T:325-->
Разъем питания под стандартный jack 5.5x2.1мм, также входное напряжение можно подключать к клеммам Vin и GND.
Разъем питания под стандартный jack 5.5x2.1мм, также входное напряжение можно подключать к клеммам Vin и GND.


=== Power over Ethernet ===  
=== Power over Ethernet === <!--T:326-->
Поддерживается питание по кабелю Ethernet. Подробнее смотрите [[Special:MyLanguage/Power over Ethernet|Power over Ethernet]].
Поддерживается питание по кабелю Ethernet. Подробнее смотрите [[Special:MyLanguage/Power over Ethernet|Power over Ethernet]].


=== Аккумулятор ===  
=== Аккумулятор === <!--T:327-->
Wiren Board позволяет подключить внутренний [[WBMZ-BATTERY - модуль резервного питания | модуль резервного питания WBMZ-BATTERY ]] с Li-Ion (Li-Pol) аккумулятором.
Wiren Board позволяет подключить внутренний [[WBMZ-BATTERY - модуль резервного питания | модуль резервного питания WBMZ-BATTERY ]] с Li-Ion (Li-Pol) аккумулятором.


== Работа с нажимными клеммами ==  
== Работа с нажимными клеммами == <!--T:328-->
[[File:Wago.jpeg|thumb|400px|Работа с самозажимными клеммами]]
[[File:Wago.jpeg|thumb|400px|Работа с самозажимными клеммами]]


<!--T:329-->
В качестве интерфейсных клемм в контроллере  
В качестве интерфейсных клемм в контроллере  
применены клеммы "тип 250".
применены клеммы "тип 250".
Строка 279: Строка 307:
кнопку клипсы, и вытащить провод.
кнопку клипсы, и вытащить провод.


== Антенны Wi-Fi, GSM, 433MHz ==  
== Антенны Wi-Fi, GSM, 433MHz == <!--T:330-->
Антенны Wi-Fi, GSM и радио 315/433MHz подключаются к SMA разъемам.
Антенны Wi-Fi, GSM и радио 315/433MHz подключаются к SMA разъемам.


<!--T:331-->
При слабом сигнале GSM рекомендуется использовать выносную антенну и располагать ее вдали от контроллера.
При слабом сигнале GSM рекомендуется использовать выносную антенну и располагать ее вдали от контроллера.


</translate>
</translate>