Датчик SHT1x

Датчики Sensirion SHT1x (SHT10, SHT11, SHT15).

Пакет: wb-mqtt-sht1x Исходные коды: https://github.com/contactless/wb-mqtt-sht1x

В автозагрузке демон wb-mqtt-sht1x, отправляющий результаты в MQTT:

convice we matt chtly stop	
i service wb-midit-shrix stop	1
L convice whe matt chtly start	i
convice whe matt chtly status	
' Service wb-mqtt-shtix status	i

Конфиг демона:

/etc/wb-mqtt-shtlx.conf	

Адреса в МОТТ:

```
Default MQTT topics are:
/devices/shtlx/meta/name SHT1x Sensor
/devices/shtlx/controls/temperature/meta/type temperature
/devices/shtlx/controls/humidity/meta/type rel_humidity
Sensor data:
/devices/shtlx/controls/temperature
/devices/shtlx/controls/humidity
Example:
$ mosquitto_sub -h 192.168.0.102 -t '/devices/shtlx/#' -v
/devices/shtlx/controls/temperature 28.5
/devices/shtlx/controls/temperature/meta/type temperature
/devices/shtlx/controls/temperature/meta/type temperature
/devices/shtlx/controls/humidity 31.7
/devices/shtlx/controls/humidity/meta/type rel_humidity
/devices/shtlx/meta/name SHT1x Sensor
```

Настройка в Zabbix:

```
mqtt.value[/devices/sht1x/controls/humidity]
mqtt.value[/devices/sht1x/controls/temperature]
```

Программное обеспечение Wiren Board

Архитектура ПО Wiren Board

Wiren Board работает под управлением стандартной сборки Debian Linux 9 Stretch. Для архитектуры используемого процессора есть официальный порт (https://www.debi an.org/ports/arm/). Поэтому почти любой пакет найдётся в стандартном репозитории, и его можно установить одной командой aptget install имя_пакета.

Есть две ветки ПО Wiren Board: **stable** и **testing**.

Исходный код программного обеспечения доступен на GitHub (https://github.com/contactl ess/). Там можно почерпнуть примеры для разработки собственного ПО.

Очередь сообщений MQTT — «скелет» программной архитектуры Wiren Board.

Веб-интерфейс Wiren Board работает непосредственно на контроллере. В нём можно:

- следить за состоянием контроллера и подключённых устройств и управлять ими,
- подключать устройства к контроллеру,
- настраивать контроллер и обновлять его ПО,
- писать правила на встроенном движке,
- настраивать SMS- и email-уведомления,
- смотреть графики истории значений параметров: температуры, напряжения и т.п.

Движок правил wb-rules позволяет создавать собственные правила для контроллера, например: «Если температура датчика меньше 18°С, включи нагреватель». Правила создаются через веб-интерфейс и пишутся на простом Javascript-подобном языке.

Для работы с SCADA-системами есть:

- Агент Zabbix
- Шлюз Modbus TCP/RTU
- Шлюз ОРС UA
- Шлюз МЭК 104
- Агент SNMP

Дополнительно:

- Node-RED инструмент визуального программирования.
- Home Assistant open-source платформа для автоматизации.
- Docker рограммное обеспечение для запуска приложений в изолированной среде.

Структура ПО контроллера. В центре очередь сообщений MQTT, которая используется для обмена информацией между разными частями ПО

🗳 🖈	Wiren Board Web UI — Mozilla F	irefox	~ ^ ×
C Wiren Board Web UI ×	+		
← → 0 0	A 192.168.2.64/#V	\$	⊚ ≡
wirenboard		Access level, Darr	Connected
# Home	IP-agpec Ethernet	Напряжние питания	
	Ethernet IP 192.168.2.64	23.78 V	
III widgets	Зауковой сигнал	Напряжение на клемме А1	
di History	ROF	0.02 V	
			_
Web UI			
MQTT channels			
Change access level			
O Help			
			F

Главная страница веб-интерфейса

Пример графического SVG-дашборда

Полезные ссылки

- Обновление прошивки контроллера
- Как разрабатывать ПО для Wiren Board статья для программистов.
- Обновление прошивок в Modbus-устройствах Wiren Board

Список сервисов и их назначение

Список сервисов, запущенных на контроллере, их статус и описание можно получить командой:

systemctl list-units --type=service

Про управление сервисами читайте в статье Диагностика ошибок в работе контроллера.

Имя сервиса	Описание			
avahi-daemon.service	Avahi mDNS/DNS-SD Stack			
bluetooth.service	Bluetooth service			
cgmanager.service	Cgroup management daemon			
cron.service	Regular background program processing daemon			
dbus.service	D-Bus System Message Bus			
dnsmasq.service	dnsmasq - A lightweight DHCP and caching DNS server			
getty@tty1.service	Getty on tty1			
hostapd.service	LSB: Advanced IEEE 802.11 management daemon			
kmod-static-nodes.service	Create list of required static device nodes for the current kernel			
knxd.service	KNX Daemon			
mosquitto.service	Mosquitto MQTT v3.1/v3.1.1 Broker			
netplug.service	LSB: Brings up/down network automatically			
networking.service	Raise network interfaces			
nginx.service	A high performance web server and a reverse proxy server			
ntp.service	LSB: Start NTP daemon			
rsyslog.service	System Logging Service			
serial-getty@ttymxc0.service	Serial Getty on ttymxc0			
ssh.service	OpenBSD Secure Shell server			
systemd-fsck-root.service	File System Check on Root Device			
systemd-fsck@dev- mmcblk0p6.service	File System Check on /dev/mmcblk0p6			
systemd-journal-flush.service	Flush Journal to Persistent Storage			
systemd-journald.service	Journal Service			
systemd-logind.service	Login Service			
systemd-modules-load.service	Load Kernel Modules			
systemd-random-seed.service	Load/Save Random Seed			
systemd-modules-load.service	Load Kernel Modules			
systemd-random-seed.service	Load/Save Random Seed			
systemd-remount-fs.service	Remount Root and Kernel File Systems			
systemd-sysctl.service	Apply Kernel Variables			
systemd-tmpfiles-setup- dev.service	Create Static Device Nodes in /dev			
systemd-tmpfiles-setup.service	Create Volatile Files and Directories			
systemd-udev-trigger.service	udev Coldplug all Devices			
systemd-udevd.service	udev Kernel Device Manager			
systemd-update-utmp.service	Update UTMP about System Boot/Shutdown			
systemd-user-sessions.service	Permit User Sessions			
user@0.service	User Manager for UID 0			
watchdog.service	watchdog daemon			

wb-configs-early.service	prepare mounts and symlinks to config files
wb-configs.service	watch config files
wb-gsm-rtc.service	LSB: initscript to use GSM modem integrated RTC
wb-homa-ism-radio.service	LSB: MQTT driver for WB HomA for RFM69 ISM radio
wb-hwconf-manager.service	LSB: Hardware configuration with Device Tree overlays
wb-init.service	LSB: board-specific initscript
wb-mqtt-adc.service	MQTT Driver for ADC
wb-mqtt-confed.service	LSB: Configuration Editor Backend
wb-mqtt-db.service	Wiren Board database logger
wb-mqtt-gpio.service	MQTT Driver for GPIO-controlled switches
wb-mqtt-knx.service	LSB: : Wiren Board MQTT KNX bridge
wb-mqtt-logs.service	Wiren Board journald to MQTT gateway
wb-mqtt-mbgate.service	Wiren Board MQTT to Modbus TCP gateway
wb-mqtt-opcua.service	Wiren Board MQTT to OPC UA gateway
wb-mqtt-serial.service	MQTT Driver for serial devices
wb-mqtt-w1.service	Kernel 1-Wire MQTT driver for WB-HomA
wb-prepare.service	initialize filesystems at first boot
wb-repart.service	prepare partitions at first boot
wb-rules.service	MQTT Rule engine for Wiren Board
wb-systime-adjust.service	Compensation of systime in PPM from value, stored in device-tree (with opposite sign)
wb-watch-update.service	LSB: Firmware update monitor

ПО МКА-3

- English
- русский

Основная статья: Wiren Board NETMON-1

Contents

Перезагрузка SCU (задние реле)

Механизм конфигурирования

- Конфигурация
- Настройка сети
- Добавление конфигурационных файлов в систему

Перезагрузка SCU (задние реле)

за управление задними реле ответственен демон аріс-рсусіе.ру.

Запуск/остановка демона:

/etc/init.d/wb-dbic-pcycle start /etc/init.d/wb-dbic-pcycle stop

Демон слушает команды по шине MQTT. Есть три разных способа вызвать перезагрузку SCU, т.е. отправить MQTT-команду демону:

- Через веб-интерфейс в разделе Back relays
- С помощью команды `dbic invoke pcycle.sh` в консоли
- С помощью отправки команды через MQTT

```
mosquitto_pub -h <ip-адрес МКА> -t "/devices/dbic-power-cycle/controls/power/on" -m "0" -q 2
```

Механизм конфигурирования

Конфигурация

Пакет wb-dbic устанавливает и хранит темплейты конфигурационных файлов в директории /etc/wb-dbic/templates/. Например темплейт для файла /etc/network/interfaces хранится в файле /etc/wb-dbic/templates/etc/network/interfaces.template.

Конфигурационные файлы генерируются посредством вызова скрипта dbic_gen_conf. Скрипт получает переменные для конфигурирования от SCU, после чего обрабатывает файлы из директории /etc/wb-dbic/templates. Обрабатываются только файлы с расширением .template.

Если для заданного файла становится невозможно получить все необходимые переменные для подстановки, то файл не обновляется.

Изменения в конфигурационных файлах не сохраняются. Изменения в темплейтах в директории /etc/wb-dbic/templates обрабатываются стандартным механизмом conffiles в dpkg: при установке обновлённого пакета и при наличии локальных правок пользователю будут предложены варианты дальнейших действий.

Настройка сети

Т.к. получение переменных для подстановки в темплейты происходит по сети, то отдельно предоставляется первоначальный файл с настройками сети -/etc/network/interfaces.

Добавление конфигурационных файлов в систему

Добавление других конфигурационных файлов в систему автоконфигурирования должно производиться через обновление пакета wb-dbic (с увеличением версии). При этом, если нужный файл предоставляется каким-либо пакетом, то необходимо пользоваться функционалом dpkg-divert или dpkg-divert в сочетании с ucf, чтобы предотвратить перезаписывание файла при обновлении исходного пакета.

Wiren Board NETMON-1

https://wirenboard.com/wiki/Wiren_Board_NETMON-1 28-04-2022 15:13

Wiren Board NETMON-1

Руководство по эксплуатации

Самая актуальная документация всегда доступна на нашем сайте по ссылке: https://wirenboard.com/wiki/Wiren_Board_NETMON-1

Этот документ составлен автоматически из основной страницы документации и ссылок первого уровня.

Содержание

Wiren Board NETMON-1
Wiren Board NETMON-1
Wi-Fi
GSM/GPRS
RS-485
Debug UART
1-Wire
ADC
Зуммер (звуковой излучатель)
Power over Ethernet
Датчик SHT1х
Программное обеспечение Wiren Board
ПО МКА-3

Wiren Board NETMON-1

- English
- русский

Wiren Board NETMON-1 - универсальный контроллер для автоматизации с открытым ПО на базе Linux в корпусе для установку в 19" стойку с встроенным GSM-модемом.

Предназначен для мониторинга сетевого и телекоммуникационного оборудования, опроса датчиков и счётчиков, удалённого управления питанием.

thumb|400px|Wiren Board NETMON-1

Contents

Технические характеристики

Комплект поставки

Подготовка к работе

Питание

От внешнего блока питания Power over Ethernet Аккумулятор

GSM/GPRS-модем

USB-порт

Коммутация внешней нагрузки

Задняя панель Передняя панель

Последовательные порты

Отладочная консоль

Разъёмы передней панели

Задняя панель

Список GPIO

Стандартные схемы подключения

Управление низковольтной нагрузкой Контакторы с управляющим напряжением 220В Датчики с аналоговым выходом по напряжению Датчики с аналоговым токовым выходом Датчики с резистивным выходом Аналоговые датчики с внешним питанием Датчики/счетчики с импульсными выходами Подключение к 1-Wire сети Подключение к сети RS-485 Датчик температуры и влажности

Программное обеспечение

Технические характеристики

Wiren Board NETMON-1 (задняя панель)

	ПО				
Операционная Debian Linux 7.0. Mainline kerne 3.19.					
	Контроллер				
Процессор	Freescale i.MX233 454 МГц				
Память оперативная	DDR SDRAM 64 МБ				
Память энергонезависимая	Карта microSD до 32 ГБ				
Беспров	водные интерфейсы				
<u>Wi-Fi</u>	802.11 b/g/n 2.4 ГГц (опция, устанавливается в USB-разъём внутри устройства)				
<u>GSM/GPRS</u>	900/1800 МГц. GPRS multi-slot class 10/8 max. 85.6 kbps (downlink). SIM-карта формата miniSIM (полноразмерная)				
Прово	дные интерфейсы				
Ethernet	10/100 Мбит/с, Разъём RJ-45				
USB 2.0 Host	(внутри корпуса)				
2x <u>RS-485</u>	есть программная поддержка протоколов Modbus RTU, ADICON/A-BUS/Uniel, Smartbus G4				
2xRS-232	один порт на передней панели, один на задней.				
Отладочная консоль	Debug UART Подключается через переходник USB-UART				
1-Wire	Подключение датчиков температуры, влажности				
Подкл	ючение датчиков				
8х <u>АЦП</u>	до 20V				
22х"Сухой контакт"	Подключение кнопок, герконов, счетчиков с импульсными выходами.				
	Выходы				
2хРеле	220В/10А, нормально замкнутые. Пары розетка IEC- 320-C13 - вилка IEC-320-C14 на задней панели.				

4хРеле	220B/6A, переключающая группа контактов. Выведены на клеммники на переднюю панель.
	Прочее
Излучатель звука	"пищалка".
Часы реального времени	<u>RTC</u> Резервная батарейка
Сторожевой таймер (watchdog)	Отдельный аппаратный watchdog, перезагружающий устройство целиком по питанию
Датчик температуры и влажности	Встроенный датчик sht10 внутри корпуса
	Питание
Потребляемая мощность	<5 Вт (пиковая - до 12 Вт)
Работа от резервного аккумулятора	встроенный li-ion аккумулятор (опция: 1800mAh или 3600mAh)
питание по витой паре	Passsive Power over Ethernet
Габаритные размеры	431 x 203 x 43 мм , корпус для установки в 19" стойку, 1U
Эксплуатация	Рабочая температура - 070С (-4085С по запросу) Покрытие лаком для влагозащиты.

Комплект поставки

- контроллер Wiren Board NETMON-1
- карта памяти с OC Linux
- клеммники ответные 4шт
- набор для крепления корпуса в 19" стойку

Подготовка к работе

- Снять верхнюю крышку корпуса
- Установить коннектор кнопки включения в разъём
- Установить SIM-карту, если требуется
- Установить крепления к стойке
- Установить верхнюю крышку корпуса, закрутить винтами, входящими в комплект

Питание

От внешнего блока питания

Допустимый диапазон питания 5-22В. Среднее потребление устройства - 1,5-2 Вт. Но т.к. модуль GSM потребляет импульсно до 8 Вт, рекомендуется использовать блоки питания с мощностью не менее 10 Вт.

Разъем питания под стандартный jack 5.5x2.1мм расположен на задней панели. Также питание можно подавать на соответствующие выводы (см. распиновку ниже) разъёма RJ45 на задней панели.

Power over Ethernet

Поддерживается питание по кабелю Ethernet (Passive PoE) через разъём RJ45 на передней панели. Поддерживаются стандартные напряжение 12В и 15В. Подробнее смотрите Power over Ethernet.

Аккумулятор

Wiren Board NETMON-1 может комплектоваться одним или двумя аккумуляторами Li-Ion (Li-Pol) с максимальным напряжением 4.2В. При подключении питания аккумулятор заряжается током до 0,5 А.

Есть защита от зарядки при отрицательных температурах и при перегреве.

GSM/GPRS-модем

Wiren Board NETMON-1 комплектуется 2G (GPRS)-модемом, который поддерживает GPRS, CSD, отправку и получение SMS.

Антенна GSM подключается к SMA разъему на задней панели контроллера. При слабом сигнале GSM рекомендуется использовать выносную антенну и располагать ее вдали от контроллера.

USB-порт

. .

Wiren Board NETMON-1 имеет один порт USB (Host, type A) внутри корпуса. Порт предназначен для подключения Wi-Fi-стиков, 3G-модемов и т.п.

Коммутация внешней нагрузки

Задняя панель

thumb | 500px | Входы-выходы для управления 220В и разъём для антенны GSM

Wiren Board NETMON-1 оборудован двумя группами коммутации питания на задней панели.

Каждая группа состоит из вилки (входа) IEC-320-C14 и розетки (выхода) IEC-320-C13. Вход и выход соединены через реле. Реле является нормально-замкнутым (т.е. при выключенном WB NETMON-1, розетки включены).

Номинальный ток реле: 16А/250VAC. Реле размыкает только один (фазный) провод. Рекомендуется использовать выходы для коммутации резистивной нагрузки до 10А.

По запросу возможна конфигурация для использования общего входа на оба выхода.

Передняя панель

thumb | 300px | Релейный выходы на передней панели

На передней панели Wiren Board NETMON-1 находятся четыре группы релейных выходов, выведенные на разъёмные клеммники.

Каждое реле является переключаемым, т.е. выведены контакты NO (нормальноразомкнутый), NC (нормально-замкнутый), COM (общий).

Номинальный ток реле: 10А@240VAC (резистивной нагрузки).

Рекомендуется использовать выходы для коммутации резистивной нагрузки до 5A @ 240В переменного тока.

Последовательные порты

Wiren Board NETMON-1 оснащён двумя полудуплексными портами RS-485 и двумя портами RS-232 (только RX/TX).

Оба порта RS-485 и один порт RS-232 выведены на разъёмы RJ45 на передней панели, один порт RS-232 выведен на разъём RJ45 на задней панели.

Устройства в Linux:

- /dev/ttyinscu къ-4юз на разъеме ию
- /dev/ttyNSC1 RS-485 на разъёме и6
- /dev/ttyNSC2 RS-232 на разъёме и4
- /dev/ttyNSC3 RS-232 на разъёме на задней панели

Про работу с RS-485 и подключениие периферийных устройств см. также статью <u>RS-</u>485.

Отладочная консоль

Отладочная консоль (debug UART) выведена на разъём и2 (см. ниже), а также на гребёнку внутри корпуса. Порт имеет уровни 3.3V и требует специального переходника USB-UART или RS232-UART для подключения к компьютеру.

Подробности по работе с отладочной консолью см. в статье Debug UART.

Разъёмы передней панели

thumb|700px| передняя панель thumb|700px|

thumb|300px|схема передней панели

порты	функция
и1	discrete input
и2	1-wire / Debug UART
иЗ	discrete input
и4	RS-232
и5	discrete input
и6	RS-485
и7	discrete input
и8	RS-485
и9	discrete input
al	ADC input
a2	ADC input
a3	ADC input
a4	ADC input
a5	ADC input
a6	ADC input
a7	ADC input

Ehternet	иl	и2	И	3	и4	и5	и6		17	и8	и9
1 Y/W	discrete input 1	5v	disc inpu	rete ut 6	-	lsolated GND	-	lsol G	ated ND	-	lsolated GND
2 Y	discrete input 2	5v	disc inpu	rete ut 7	-	discrete input 11	-	dise inp	crete ut 15	-	discrete input 19
3 G/W	discrete input 3	Debug Tx	disc inpu	rete ut 8	GND	lsolated GND	-	lsol G	ated ND	-	lsolated GND
4 B	discrete input 4	1-Wire	disc inpu	rete ut 9	RS- 232 Tx 1	discrete input 12	RS- 485 A2	dise inp	crete ut 16	RS- 485 A1	discrete input 20
5 B/W	discrete input 5	GND	disc inpu	rete t 10	GND	lsolated GND	RS- 485 B2	lsol G	ated ND	RS- 485 B1	lsolated GND
6 G	lsolated GND	Debug Rx	lsola GN	ated ID	RS- 232 Tx 1	discrete input 13	GND	dise inp	crete ut 17	GND	discrete input 21
7 Br/W	lsolated GND	GND	lsola GN	ated ID	-	lsolated GND	-	lsol G	ated ND	-	lsolated GND
8 Br	lsolated GND	GND	lsola GN	ated ID	-	discrete input 14	-	dis inp	crete ut 18	-	discrete input 22
Fthernet	a1	а	2		a3	ə4	a5		a	6	а7
1 Y/W	3.3V				-	-	-			-	-
2 Y	3.3V				-	_	-			-	
3 G/W	GND				-	_	-			-	_
4 B	ADC input 4	ADC	input	ADC	C input 6	ADC input 2	ADC ir 7	nput	ADC	input 3	ADC input 8
5 B/W	GND	GN	ID	G	GND	GND	GN	D	G	ND	GND
6 G	ADC input 5	-			-	-	-			-	-
7 Br/W	5V	-			-	-	-			-	-
8 Br	5V	-			-	-	-			-	-

Задняя панель

thumb|300px|Распиновка разъёма RJ-45 на задней панели WB NETMON-1

Разъём RJ-45 на задней панели, распиновка:

Ethernet	
1 Y/W	RS-232 TX (2)
2 Y	RS-232 TX (2)
3 G/W	RS-232 RX (2)
4 B	V+ вход (5-15V)
5 B/W	V+ вход (5-15V)
6 G	RS-232 RX (2)
7 Br/W	GND
8 Br	GND
shield	GND

Список GPIO

Wiren Board NETMON-1: Список GPIO

Стандартные схемы подключения

thumb|400px|Пример подключения кнопки

Управление низковольтной нагрузкой

Реле на 12/24В, светодиоды, вентиляторы, сигнальные лампы и т. д.

Низковольтной нагрузкой можно управлять с помощью четырёх реле на передней панели.

Контакторы с управляющим напряжением 220В

подключите управляющую катушку контактора через реле на переднеи панели.

Реле в Wiren Board NETMON-1 не содержит защитных демпфирующих цепочек, соблюдайте осторожность при подключении индуктивной нагрузки.

Датчики с аналоговым выходом по напряжению

Подключите землю устройства к клемме GND, или соедините с общей земляной шиной. Выход датчика подключается к аналоговым входам в разъёмах a1-a7.

Датчики с аналоговым токовым выходом

Специальных токовых входов в Wiren Board NETMON-1 нет, но можно, используя резистор 100-300Ом, ток преобразовать в напряжение и подключить как в предыдущем пункте.

Датчики с резистивным выходом

С помощью внешнего резистора и опорного напряжения нужно собрать делитель, чтобы получить выход напряжения (см. предыдущие пункты). В качестве опорного напряжения можно использовать выход +5V с контактов 7-8 разъёма а1, или 1-2 разъёма и2.

Датчики удобно подключать к разъёму "a1", имеющему два входа АЦП и опорные напряжения.

Аналоговые датчики с внешним питанием

Аналоговые датчики с внешним питанием, такие как электрохимические датчики серии MQ-ххх, датчики влажности HIH-4000 и т.д. также удобно подключать к разъёму "a1", имеющему входы АЦП и опорные напряжения.

Датчики/счетчики с импульсными выходами

Такие устройства формируют сигнал, замыкая подходящие к ним два провода. Подключите один провод к контакту "Isolated GND". Второй провод подключите к одному из соответствующему контакту (discrete input) разъёмов и1,и3,и5,и7,и9.

Некоторые счетчики имеют импульсный выход на оптроне, тогда два провода имеют полярность - "плюс" и "минус". В таком случае минус подключается к "Isolated GND", "плюс" к "discrete input"

Подключение к 1-Wire сети

Для подключения 1-wire используется разъём и2.

Землю сети подключите к контактам GND (7-8@и2 и др.) или общей земляной шине. Линию данных к контакту "1-Wire" (4@и2). Линию питания к контакту "5V" (1-2@и2) (внутренний источник питания). Допускается использовать внешние источники питания шины 1-Wire.

При использовании пассивного питания, контакт питания каждого датчика соединяется с земляным проводом. В этом случае, шина прокладывается двумя проводами, подключаемыми соответственно к "1-Wire" и "GND".

Подключение к сети RS-485

Смотрите RS-485.

В Wiren Board NETMON-1 два порта RS-485 на разъёмах "и6" и "и8".

Линии А В подключаются к клеммам А и В соответственно.

Датчик температуры и влажности

Wiren Board NETMON-1 может комплектоваться встроенным датчиком температуры и влажности. Подробнее см. Датчик SHT1x.

Программное обеспечение

См. Программное обеспечение Wiren Board

ПО МКА-З

Wiren Board NETMON-1

- English
- русский

Wiren Board NETMON-1 is a universal controller for automation with open software based on Linux, a built-in GSM modem and designed in a case for installation in a 19" rack.

Designed for monitoring of network and telecommunication equipment, polling of sensors and counters, remote power management.

thumb|400px|Wiren Board NETMON-1

Wiren Board NETMON-1 (back side)

Front panel relay Back panel

List of GPIOs

Standard wiring diagrams

Low voltage load control Electric contactors with control voltage of 220 V Sensors with analog voltage output

Sensors with analog current output

Sensors with resistive output Analog sensors with external power supply

Sensors/counters with pulse outputs

Network connection of 1-Wire RS-485 network connection

Temperature and humidity sensor

Software

Technical specifications

	Software				
Operating System	Debian Linux 7.0. Mainline kernel 3.19.				
	Controller				
CPU	Freescale i.MX233 454 MHz				
RAM	DDR SDRAM 64 MB				
ROM	MicroSD card 32 GB max				
"'V	Vireless interfaces'"				
<u>Wi-Fi</u>	802.11 b/g/n 2.4 GHz (optional, installed in the USB connector inside the device)				
GSM/GPRS	900 / 1800MHz. GPRS multi- slot class 10/8 max. 85.6 kbps (downlink). MiniSIM card (full size)				
	Wired interfaces'"				
Ethernet	10/100 Mbps, RJ-45				
USB 2.0 Host	(inside case)				
2x <u>RS-485</u>	software support for Modbus RTU, ADICON/A-BUS/Uniel, Smartbus G4 protocols				
2xRS-232	one port on the front, one on the back.				
Debug console	Debug UART connects via USB- UART adapter				
1-Wire	Connecting temperature, humidity sensors				
	Connect sensors				
8x ADC	up to 20V				
22xDry contact	Connection of buttons, reed switches, counters with pulse outputs.				
	Outputs				
2hrele	220V/10A, normally closed. Pairs IEC-320-C13 socket - IEC- 320-C14 plug on the rear panel.				
4hRelay	220V/6A, switching group of contacts. Displayed on the				

	front panel terminals.
	"other"
Buzzer	beeper.
Real time clock	RTC battery Backup
Watchdog timer	Separate hardware watchdog, restarting the device entirely by power supply
Temperature and humidity sensor	built-In sensor <u>sht10</u> inside the case
	"food"
Power consumption	<5 W (peak - up to 12 W)
Battery backup	built-in li-ion battery (option: 1800mAh or 3600mAh)
twisted pair power	Passive Power over Ethernet
Overall dimensions	431 x 203 x 43 mm , 19" rack mount housing, 1U
Operation	operating temperature - 070C (-4085C on request) Varnish for moisture protection.

Package

- Wiren Board NETMON-1 controller
- memory card with Linux OS
- 4pcs counter terminals
- 19" rack mount housing kit

Preparation for work

- Remove the top cover of the housing
- Install the power button connector into the connector
- Insert a SIM card if required
- Install rack mounts
- Install the top cover of the housing, tighten the screws included in the kit

Power Supply

External power supply

The permissible power range is 5-22V. The average consumption of the device is 1.5-2 watts. But since the GSM module consumes up to 8W impulsively, it is recommended to use power supplies with a power of at least 10W.

Power plug for standard jack 5.5x2.1 mm located on the rear panel. Power can also be supplied to the corresponding pins (see Pinout below) of the RJ45 connector on the rear panel.

Power over Ethernet

Supports Power over Ethernet (Passive PoE) via RJ45 connector on the front panel. Supports the standard voltage of 12V and 15V. See Power over Ethernet.

Battery

The Wiren Board NETMON-1 can be equipped with one or two Li-Ion (Li-Pol) batteries with a maximum voltage of 4.2 V. When the power is connected, the battery is charged with a current of up to 0.5 A.

Protection against charging at low temperatures and overheating.

GSM/GPRS-modem

Wiren Board NETMON-1 comes with 2G (GPRS) modem that supports GPRS, CSD, sending and receiving SMS.

The GSM antenna is connected to the SMA connector on the back of the controller. If the GSM signal is weak, it is recommended to use a remote antenna and place it away from the controller.

USB port

Wiren Board NETMON-1 has one USB port (Host, type A) inside the case. The port is designed to connect Wi-Fi sticks, 3G modems, etc.

External load switching

Back panel

thumb | 500px | Inputs/outputs for 220V control and GSM antenna connector

The Wiren Board NETMON-1 is equipped with two power switching groups on the rear panel.

Each group consists of an IEC-320-C14 plug (input) and an IEC-320-C13 socket (output). The input and output are connected via a relay. The relay is normally closed (i.e. when WB NETMON-1 is off, the sockets are on).

Rated relay current: 16A/250VAC. The relay opens only one (phase) wire. It is recommended to use outputs for switching resistive load up to 10A.

On request, a configuration is available to use a common input to both outputs.

Front panel

thumb | 300px | Front panel relay outputs

There are four groups of relay outputs, output on the connector terminals, on the front panel of the Wiren Board NETMON-1.

Each relay is switchable, i.e. contacts NO (normally open), NC (normally closed), COM (common) are derived.

Rated relay current: 10A@240VAC (resistive load).

It is recommended to use outputs for switching resistive load up to 5A @ 240V AC.

Serial ports

The Wiren Board NETMON-1 is equipped with two half-duplex RS-485 ports and two RS-232 ports (RX/TX only).

Both RS-485 ports and one RS-232 port are output to RJ45 connectors on the front panel, one RS-232 port is output to RJ45 connector on the back panel.

Linux devices:

- /dev/ttyNSC0 RS-485 on I8 connector
- /dev/ttyNSC1 RS-485 on I6 connector
- /dev/ttyNSC2 RS-232 on I4 connector
- /dev/ttyNSC3 RS-232 on rear panel connector

See also RS 125 for information on working with RS 125 and connecting narinharals

Debug console

Debug console (debug UART) is output to connector I2 (see below), as well as to the comb inside the case. The port has 3.3 V levels and requires a special USB-UART or RS232-UART adapter to connect to the computer.

For details on working with the debug console, see Debug UART.

Front panel relay

thumb|700px| front panel thumb|700px|

thumb|300px|схема передней панели

ports	function
и1	discrete input
и2	1-wire / Debug UART
иЗ	discrete input
и4	RS-232
и5	discrete input
и6	RS-485
и7	discrete input
и8	RS-485
и9	discrete input
al	ADC input
a2	ADC input
a3	ADC input
a4	ADC input
a5	ADC input
a6	ADC input
a7	ADC input

Ehternet	i1	i2	13	3	i4	i5	i6	i	7	i8	i9		
1 Y/W	discrete input 1	5v	discı inpu	rete ut 6	-	lsolated GND	-	lsol G	ated ND	-	Isolated GND		
2 Y	discrete input 2	5v	discı inpu	rete ut 7	-	discrete input 11	-	dis inp	crete ut 15	-	discrete input 19		
3 G/W	discrete input 3	Debug Tx	discı inpu	rete ut 8	GND	lsolated GND	-	lsol G	ated ND	-	lsolated GND		
4 B	discrete input 4	1-Wire	disci inpu	rete ut 9	RS- 232 Tx 1	discrete input 12	RS- 485 A2	dise inp	crete ut 16	RS- 485 A1	discrete input 20		
5 B/W	discrete input 5	GND	disci inpu	rete t 10	GND	lsolated GND	RS- 485 B2	lsol G	ated ND	RS- 485 B1	Isolated GND		
6 G	lsolated GND	Debug Rx	lsola GN	ated ID	RS- 232 Tx 1	discrete input 13	GND	dise inp	crete ut 17	GND	discrete input 21		
7 Br/W	lsolated GND	GND	lsola GN	ated ID	-	lsolated GND	-	lsol G	ated ND	-	Isolated GND		
8 Br	lsolated GND	GND	lsolated GND		-	discrete input 14	-	dis inp	crete ut 18	-	discrete input 22		
Ethornot	1		2		- 3	2/	 5		2	6	۶7		
	3 31/		£		-		-			-	-		
2 Y	3.3V				_					_			
3 G/W	GND	-	_		-	_	-			-	_		
4 B	ADC input 4	ADC	ADC input		C input 6	ADC input 2	ADC ir 7	nput	ADC	input 3	ADC input 8		
5 B/W	GND	GN	GND		GND		GND	GND	GN	D	GI	ND	GND
6 G	ADC input 5	-			-	-	-			-	-		
7 Br/W	5V	-	-		-		-	-	-	-		-	-
8 Br	r 5V -				-	-	-			-	-		

Back panel

thumb|300px|RJ-45 Pinout on the back of WB NETMON-1

RJ-45 connector on the rear panel, pinout:

Ethernet	
1 Y/W	RS-232 TX (2)
2 Y	RS-232 TX (2)
3 G/W	RS-232 RX (2)
4 B	V+ input (5-15V)
5 B/W	V+ input (5-15V)
6 G	RS-232 RX (2)
7 Br/W	GND
8 Br	GND
shield	GND

List of GPIOs

Wiren Board NETMON-1: List of GPIOs

Standard wiring diagrams

Low voltage load control

12/24V relays, LEDs, fans, signal lights, etc.

The low-voltage load can be controlled by four relays on the front panel.

Button connection example

Electric contactors with control voltage of 220 V

Connect the contactor control coil via the relay on the front panel.

Relay in Wiren Board NEIMON-I contains no protective damping chains, aware when connecting inductive loads.

Sensors with analog voltage output

Connect the ground of the device to the GND terminal, or connect to a common ground bus. The sensor output is connected to analog inputs in A1-A7 connectors.

Sensors with analog current output

There are no special current inputs in the Wiren Board NETMON-1, but you can use a resistor 100-300om, convert the current into voltage and connect as in the previous paragraph.

Sensors with resistive output

Using an external resistor and a reference voltage, the divider must be assembled to obtain a voltage output (see previous paragraphs). As a reference you can use the output of +5V from pins 7-8 of connector A1, 1 to 2 of the connector I2.

The sensors are conveniently connected to the "A1" connector, which has two ADC inputs and reference voltages.

Analog sensors with external power supply

Analog sensors with external power, such as electrochemical sensors series MQ-xxx, humidity sensors HIH-4000, etc. It is also convenient to connect to the connector "A1", which has ADC inputs and reference voltages.

Sensors/counters with pulse outputs

Such devices form a signal by closing two wires that are suitable for them. Connect one wire to the "Isolated GND" pin. Connect the second wire to one of the corresponding contacts (discrete input) of connectors I1,I3,i5,i7,I9.

Some counters have a pulse output on the optocoupler, then the two wires have a polarity - "plus" and "minus". In this case, the minus is connected to "Isolated GND", "plus" to "discrete input".

INGLMOLK CONNECTION OF T-MILE

The 1-wire connection uses the I2 connector.

Connect the ground of the network to the contacts GND (7-8@I2, etc.) or common ground bus. Data line to "1-Wire" contact (4@I2). Power line to contact "5V" (1-2@I2) (internal power supply). External 1-Wire bus power supplies are allowed.

When using a passive power supply pin of each sensor is connected to the earth wire. In this case, the bus consists two wires attached, respectively, to '1-Wire "and" GND ".

RS-485 network connection

See RS-485.

The Wiren Board NETMON-1 has two RS-485 ports on the "I6" and "I8" connectors.

Lines A B are connected to terminals A and B respectively.

Temperature and humidity sensor

Wiren Board NETMON-1 can be equipped with a built-in temperature and humidity sensor. For more information, see SHT1x Sensor.

Software

Wiren Board Software

MKA-3 Software

Wi-Fi

Contents

Режимы работы

Первое подключение по Wi-Fi

Антенны

Подключение к точке доступа

Настройка Wi-Fi на контроллере Wiren Board

Настройка в режиме точки доступа

Установка пароля на подключение к точке доступа

Настройка в режиме точки доступа и клиента одновременно

Отключение режима точки доступа

Настройка в режиме клиента

Подключение к Wi-Fi точке доступа вручную

Универсальный файл настроек Wi-Fi

Автоматическое переподключение при проблемах с соединением

Режимы работы

Wi-Fi в Wiren Board можно настроить на работу в одном из двух или трёх режимов:

- Режим точки доступа (включён по умолчанию). Работает относительно медленно. Скорости вполне хватит для работы с веб-интерфейсом, но не стоит использовать как замену роутера.
- Режим клиента.
- Одновременная работа в режиме и точки доступа, и клиента.

В очень редких случаях возможна несовместимость адаптера Wi-Fi в Wiren Board с некоторыми другими устройствами Wi-Fi. Это общая проблема реализаций Wi-Fi на чипсетах разных производителей. Если вы столкнулись с необъяснимыми проблемами при работе, рекомендуем поменять настройки шифрования, ширины канала и т.п.

Первое подключение по Wi-Fi

Антенны

Прикрутите антенну к разъёму для антенны Wi-Fi.

Без антенны Wi-Fi в контроллерах Wiren Board работает на расстоянии не более одного метра. Чтобы получить стандартный для Wi-Fi радиус работы, нужно подключить к соответствующему разъёму контроллера антенну. Если контроллер находится в щитке (особенно в металлическом) или отдельной комнате, лучше

использовать выносную антенну. Разъём для антенны — стандартный для Wi-Fi <u>RP-SMA (htt</u> <u>ps://en.wikipedia.org/wiki/SMA_connector#Reve</u> <u>rse_polarity_SMA)</u> ("гнездо", у GSM-антенн наоборот).

Подключение к точке доступа

Контроллер создает Wi-Fi точку доступа и мы можем подключиться к ней:

Сравнение разъёмов для антенн Wi-Fi (RP-SMA) и GSM (SMA)

- Откройте на ноутбуке или телефоне список WiFi точек доступа.
- Выберите из списка точку доступа с именем WirenBoard-XXXXXXXX. Где XXXXXXXX серийный номер контроллера.

При подключении по Wi-Fi контроллер будет доступен по IP-адресу **192.168.42.1**.

По умолчанию, для подключения к контроллеру по Wi-Fi не требуется пароль, но вы можете это изменить.

Настройка Wi-Fi на контроллере Wiren Board

Настройка производится стандартным для Linux Debian способом - через файл /etc/network/interfaces. Краткие инструкции для типовых задач даны ниже, на сайте Linux Debian есть подробная документация (https://wiki.debian.org/ru/NetworkC onfiguration).

Настройка в режиме точки доступа

Режим точки доступа включён по умолчанию. Работа в режиме точки доступа обеспечивается демоном hostapd (https://wireless.wiki.kernel.org/en/users/docum entation/hostapd).

Сперва настраиваем демон hostapd:

1. в файле /etc/default/hostapd раскомментируйте строку (то есть удалите знак # в начале строки)

DAEMON_CONF="/etc/hostapd.conf"

2. отредактируйте файл /etc/hostapd.conf, чтобы он выглядел так:

```
interface=wlan0
#driver=nl80211 # оставьте эту строку закомментированной
ssid=WirenBoard # вместо WirenBoard можете подставить другое имя для создаваемой точки доступа
channel=1
```

Теперь нужно настроить сам интерфейс. Настройка делается в файле /etc/network/interfaces:

1. раскомментируйте и отредактируйте (или добавьте, если их не было) строки, относящиеся к настройке в режиме точки доступа:

iface wlan0 inet static address 192.168.42.1 # здесь 192.168.42.1 - адрес, по которому в новой сети будет находиться Wiren Board; можете указать другой адрес netmask 255.255.255.0

2. закомментируйте строки, относящиеся к работе в режиме клиента:

		- i
t #auto wlan0		
π auto wtano		- 1
i #iface wlan0 inet dhcn		i
"indee weand ince anop		
f# wna-ssid	{bizz}	- 1
, "		- i
!# wpa-psk	{password}	- 1
i i i i i i i i i i i i i i i i i i i		- i
L		

Выполните команду

/etc/init.d/hostapd restart

В итоге у нас получилась открытая точка доступа, для подключения к которой не требуется пароль.

Установка пароля на подключение к точке доступа

Подключитесь к контроллеру по SSH и откройте файл настроек /etc/hostapd.conf, для этого введите команду:

```
nano /etc/hostapd.conf
```

Добавьте в конец файла строки:

wpa=2 wpa passphrase=your password wpa key mgmt=WPA-PSK wpa_pairwise=TKIP CCMP rsn_pairwise=TKIP CCMP

Придумайте свой пароль и замените в файле your_password на него. Сохраните файл нажатием клавиш Ctrl+0 и выйдете из редактора Ctrl+X.

После этого выполните команду:

(atc/init_d/bactand_ractart	
/etc/init.u/nostapu restart	
	i

Контроллер применит новые настройки и связь с ним будет потеряна. Нужно будет заново подключиться к контроллеру по WiFi с указанным паролем. Если изменения настроек вы не можете подключиться к контроллеру по WiFi — подключитесь к нему по Ethernet и проверьте настройки в файле /etc/hostapd.conf.

Настройка в режиме точки доступа и клиента одновременно

Режим одновременной работы модуля Wi-Fi и в режиме точки доступа, и в режиме клиента, называется *Concurrent Mode* или *STA+SoftAP*, и поддерживается не всеми Wi-Fi модулями. Он работает на всех версиях Wiren Board 6 и на некоторых ревизиях WB5. Проверено, что он работает из коробки на Wiren Board с чипом Realtek 8723BU и ядром Linux 4.1.15. Чтобы проверить, выполняются ли эти условия, выполните команды:

```
uname -a
lsmod | grep 8723bu
```

Если условия не выполнены, возможно, на вашем Wiren Board, всё равно, можно настроить Concurrent Mode. В качестве отправной точки используйте инструкцию (ht tp://randomstuffidosometimes.blogspot.ru/2016/03/rtl8192cu-and-rtl8188cus-in-station-an d.html).

Если условия выполнены:

1. Выполните команду

iwconfia В её выводе должны быть показаны два интерфейса Wi-Fi: wlan0 и wlan1.

 Настройте по двум предыдущим инструкциям подключение в режиме клиента и подключение в режиме точки доступа, но используйте для них разные интерфейсы. Например, оставьте wlan0 для точки доступа, а клиента сделайте на wlan1. Соответствующая часть файла /etc/network/interfaces должна выглядеть так:

```
# Wireless interfaces
auto wlan1
iface wlan1 inet dhcp
wpa-ssid {ssid} # вместо {ssid} подставьте имя точки доступа
wpa-psk {password} # вместо {password} подставьте пароль
auto wlan0
iface wlan0 inet static
address 192.168.42.1
netmask 255.255.255.0
```

Отключение режима точки доступа

Если вы хотите перевести адаптер в <u>режим клиента</u>, подключиться к Wi-Fi точке доступа в ручном режиме или совсем отключить Wi-Fi на контроллере — отключите

1. Отключите автоматический запуск сервиса hostapd:

suctomet] disable bestand	i
i systemicit disable nostapo	
i i i i i i i i i i i i i i i i i i i	i
L	

2. Остановите демон hostapd

service hostapd stop

- Теперь закомментируйте настройки точки доступа и задайте настройки WiFiклиента:
 - откройте файл для редактирования

mcedit /etc/network/interfaces

закомментируйте строки, относящиеся к настройке в режиме точки доступа:

```
#allow-hotplug wlan0
#iface wlan0 inet static
# address 192.168.42.1
# netmask 255.255.255.0
```

- 4. Сохраните и закройте файл настроек.
- 5. Запретите раздачу IP-адресов, для этого остановите DHCP-сервер:

systemctl disable dnsmasq service dnsmasq stop

Режим точки доступа отключен, чтобы его включить, выполните инструкции из раздела Настройка в режиме точки доступа.

Настройка в режиме клиента

После настройки точки доступа в режиме клиента, контроллер будет подключаться к точке доступа автоматически при каждой загрузке операционной системы.

Вы можете настроить автоматическое подключение контроллера к Wi-Fi точке доступа:

- 1. Отключите точку доступа по инструкции в разделе Отключение режима точки доступа
- 2. Откройте файл настроек:

mcedit /etc/network/interfaces

3. Раскомментируйте и отредактируйте строки (или добавьте, если их не было):

1		1
į	auto wlan0	i.
į	ifeen valee	÷
į		÷
į	wpa-ssid ssid # вместо ssid подставьте имя точки доступа	÷
	wpa-psk password # pmecto password полставьте пароль	ł.
i		÷
		-

4. Если точка доступа скрыта, то добавьте параметр:

wpa-scan-ssid 1

- 5. Сохраните и закройте файл настроек.
- Завершите настройку, для этого перезапустите беспроводной интерфейс командами:

ifdown wlan0 && ifup wlan0

Подключение к Wi-Fi точке доступа вручную

Подключение в ручном режиме будет разорвано после перезагрузки контроллера.

Если у вас возникла проблема с настройкой автоматического подключения, то вы можете попробовать подключиться к Wi-Fi точке доступа вручную:

- 1. Отключите точку доступа по инструкции в разделе Отключение режима точки доступа
- 2. Запустите поиск доступных точек доступа с помощью команды iwlist wlan0 scanning:

~# iwlist wlan0 scanning | grep -i essid ESSID:"DIR-615" ESSID:"MTSRouter_2.4GHz_072433" ESSID:"Smart_box-40B598" ESSID:"TP-Link_0E5AW" ESSID:"TP-LINK_78DC"

в примере контроллер «видит» пять точек доступа.

- 3. Этот шаг зависит от типа сетевой аутентификации, выбранной в настройках точки доступа, к которой вы хотите подключиться:
 - WPA-PSK:
 - 1. Задайте параметры подключения:

iwconfig wlan0 essid ИмяТочкиДоступа key ПарольОтТочкиДоступа

2. Запустите сетевой интерфейс:

	i
! ITCONTIG WLANU UD	
i	

- WPA2-PSK:
- 1. Сгенерируйте файл с учётной записью для подключения к точке доступа:

wpa_passphrase ИмяТочкиДоступа ПарольОтТочкиДоступа > /root/wpa.conf

2. Установите подключение с использованием сгенерированного файла:

wpa_supplicant -Dwext -iwlan0 -c/root/wpa.conf &

4. Подождите 15 секунд и проверьте подключение командой iwconfig wlan0:

~# iwconfig wlan0 | grep -i essid wlan0 IEEE 802.11bgn ESSID:"DIR-615" Nickname:"<WIFI@REALTEK>"

в примере контроллер подключён к точке доступа с именем DIR-615. Если в строке будет unassociated, то контроллер не смог подключиться.

5. Если контроллер успешно подключился к точке доступа и на ней запущен DHCPсервер, то запустите dhcpclient:

dhclient wlan0

6. Проверьте, получил ли контроллер IP адрес, для этого используйте команду ip а:

~# ip a | grep wlan0 5: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 inet 192.168.2.83/24 brd 192.168.2.255 scope global wlan0

в примере контроллер получил ір-адрес 192.168.2.83.

Настройка подключения контроллера к точке доступа завершена.

Универсальный файл настроек Wi-Fi

Ниже приведен текст файла с настройками для подключения к сетям с разными параметрами шифрования. Оригинал файла можно посмотреть на сайте www.raspberrypi.org (https://www.raspberrypi.org/forums/viewtopic.php?t=7592).

#iface wlan0 inet static # address UR_IP #gateway UR_ROUTER_IP #netmask 255.255.255.0 #; otherwise use dhcp # #iface wlan0 inet dhcp #; OPEN wireless config # #wireless-essid UR_ESSID #wireless-mode managed #; WEP wireless config # #wireless-essid UR ESSID #wireless-key UR KEY #; end of WEP config #; WPA and WPA2 wireless config # #; all command config lines above HERE to be #'ed except the entry auto wlan0 wpa-driver wext wpa-ssid UR_ESSID #; wpa-ap-scan is 1 for visible and 2 for hidden hubs wpa-ap-scan 1 #; wpa-proto is WPA for WPA1 (aka WPA) or RSN for WPA2 wpa-proto WPA #; wpa-pairwise and wpa-group is TKIP for WPA1 or CCMP for WPA2 wpa-pairwise TKIP wpa-group TKIP wpa-key-mgmt WPA-PSK #; use "wpa_passphrase UR_ESSID UR_KEY" to generate UR_HEX_KEY #; enter the result below wpa-psk UR HEX KEY # end of wireless bits

Автоматическое переподключение при проблемах с соединением

Способ заимствован на сайте alexba.in (http://alexba.in/blog/2015/01/14/automatically-r econnecting-wifi-on-a-raspberrypi/).

Допустим, контроллер подключён к роутеру с адресом 192.168.0.1 через интерфейс wlan1:

1. Создайте в папке / root скрипт wifi_autoconnect.sh:

```
_____
 mcedit /root/wifi_autoconnect.sh
    _____
с содержанием:
#!/bin/bash
# Подставьте имя интерфейса
WLANINTERFACE=wlan1
 # Подставьте адрес роутера или сервера в интернете, доступ к которому будет проверяться
 SERVER=192.168.0.1
PATH="/bin:/sbin:/usr/local/sbin:/usr/sbin:$PATH"
 # Only send two pings, sending output to /dev/null
 ping -I ${WLANINTERFACE} -c2 ${SERVER} > /dev/null
 # If the return code from ping () is not 0 (meaning there was an error)
if [ $? != 0 ]
 then
 # Restart the wireless interface
 ifdown --force ${WLANINTERFACE}
 ifup ${WLANINTERFACE}
fi
```

		ن
2 Спол	айта файл использамым, выпользив команлу	
г. сдел	айте файл исполняемым, выполнив команду	
	chmod +x /root/wifi_autoconnect.sh	

3. Запланируйте выполнение скрипта каждую минуту:

Добавьте в конец файла /etc/crontab строку

				- i
*	* ***	root	/root/wifi autoconnect.sh	
i		1000		- i
:#	Обязательно	добавьте	пустую строку в конец фаила	
i .				- i

GSM/GPRS

Contents

Общая информация

Получение информации о модеме

Включение и начало работы

Утилита wb-gsm

Переключение активной sim-карты

Низкоуровневая работа по uart

Подключение в linux Отправка АТ-команд

Работа с sms и ussd

Настройка Примеры команд gammu SMS и USSD на русском SMS-уведомления

Интернет через РРР

Быстрый выход в интернет Автоматический запуск подключения Автоматическое восстановление подключения Резервирование канала связи

Интернет с 4G-модемом (LTE)

Настройка модема как сетевой карты Настройка виртуальной сетевой карты

Мультиплексирование

Документация на модемы

GPRS на модемах SIM7000E 2G/NB-IoT

Общая информация

В контроллеры Wiren Board могут быть установлены 2G/3G/4G(LTE)/NB-IOT модемы —

зависит от комплектации.

С помощью модемов можно:

- отправлять и принимать SMS,
- подключаться к интернету по протоколу PPP для 2G- и 3G-модемов, а также настраивать 4G-модем как сетевую карту с выходом в интернет.

Модемы подключаются к процессору по uart и usb, исключение — модемы 2G. Подробнее о подключении модемов и низкоуровневом взаимодействии с ними можно почитать в разделе Низкоуровневая работа по uart.

Управление питанием и переключением активных sim-карт (если их две) производится с помощью gpio, процесс описан в разделе <u>Переключение активной</u> sim-карты.

Включение и отключение модема рекомендуем делать с помощью утилиты wb-gsm.

Получение информации о модеме

В контроллерах, начиная с 2019 года, некоторая информация о модеме заносится в память. Получить её можно с помощью чтения файлов в директории /proc/device-tree/wirenboard/gsm/.

В контроллерах версии 6.7 модем устанавливается модулем расширения. После физического подключения модема его нужно добавить в конфигурацию контроллера:

- 1. В веб-интерфейсе перейдите в раздел Settings → Configs → Hardware Modules Configuration, выберите Modem slot.
- 2. В раскрывающемся списке **Module type** выберите тип установленного модуля.
- 3. Нажмите кнопку Save. Контроллер включит нужные для работы модема порты.

Для удаления модуля выберите тип **None**.

После конфигурирования включите модем командой wb-gsm on и настройте подключение к оператору связи.

Например, чтобы узнать модель модема, нужно выполнить команду

cat /proc/device-tree/wirenboard/gsm/model

Подробнее о файлах внутри директории можно узнать из таблицы:

Файл	Описание
/proc/device-tree/wirenboard/gsm/model	модель модема
/proc/device-tree/wirenboard/gsm/type	поддерживаемые сети
/proc/device-tree/wirenboard/gsm/status	статус модема в системе

Включение и начало работы

Чтобы начать работу с модемом, нужно:

- 1. Вставьте sim-карту.
- 2. Подключите антенну.
- 3. Перезапустите модем, выполнив команду

wb-gsm restart_if_broken

После каждой смены sim-карты необходимо перезапускать модем.

Утилита wb-gsm

Для упрощения работы с модемами была написана утилита wb-gsm, которая входит в пакет wb-utils (https://github.com/wirenboard/wb-utils).

Утилита wb-gsm входит в состав пакета wb-utils, который предустановлен на все контроллеры Wiren Board.

С помощью wb-gsm вы сможете:

- управлять питанием модемов, команды on, off, restart_if_broken;
- настраивать baudrate связи по uart, команды init_baud, set_speed;
- получать imei, команда imei.

Все команды wb-gsm можно посмотреть в репозитории на Github по ссылке в начале раздела.

Пример использования утилиты wb-gsm для получения imei модема, флаг DEBUG=true — выводить отладочную информацию:

DEBUG=true wb-gsm imei

Переключение активной sim-карты

По умолчанию активна Sim1 — в каждый момент времени только одна sim-карта может быть активной.

Переключить модем на другую sim-карту можно с помощью gpio процессора. Узнать его номер можно двумя способами:

- ВЫПОЛНИТЬ КОМАНДУ echo \$WB_GPI0_GSM_SIMSELECT
- найти *SIM Slot Select gpio* в таблице gpio контроллера.

По умолчанию, этот gpio уже экспортирован в sysfs, поэтому, для переключения активной sim-карты с 1 на 2, нужно выполнить команду (в примере, номер gpio для переключения sim-карт - 88):

echo 1 > /sys/class/gpio/gpio88/value	

Соответственно, для переключения обратно на sim1, нужно записать 0.

Подробнее о работе с дріо можно узнать из статьи Работа_с_GPIO.

Для того чтобы новая sim-карта стала активной, нужно выполнить следующие ATкоманды (см. раздел о работе с AT-командами):

AT+CFUN=0 AT+CFUN=1

Низкоуровневая работа по uart

Любое взаимодействие с модемом так или иначе сводится к отправке АТ-команд через последовательный порт модема. Все модемы подключаются к порту /dev/ttyGSM. 3G модемы, помимо этого, подключаются к портам /dev/ttyACMX (порты создаются usb-драйвером cdc_acm).

Подключение в linux

- uart: Порт /dev/ttyGSM является ссылкой на /dev/ttymxcX (uart процессора) и создается с помощью правил udev. Конечный порт может быть разным для разных версий контроллера (подробнее можно посмотреть на нашем github (https://github. com/wirenboard/wb-configs/tree/master/configs/usr/share/wb-configs/udev)).
- usb: Порты /dev/ttyACMX (в случае 3G-модема) появляются автоматически после подачи питания на модем. Обычно, порты 3G-модема — это /dev/ttyACM0-6, однако точно определить, к каким портам модем подключен по USB можно, выполнив команды:

wb-gsm restart_if_broken; dmesg | tail

Примерный вывод команды:

[6102.978383] usb 2-1.2: New USB device found, idVendor=1e0e, idProduct=0020 [6102.985653] usb 2-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 [6102.993108] usb 2-1.2: Product: SIMCOM_PRODUCT [6102.997728] usb 2-1.2: Manufacturer: SIMCOM_VENDOR [6103.002644] usb 2-1.2: SerialNumber: 004999010640000 [6103.002644] usb 2-1.2: SerialNumber: 004999010640000 [6103.082093] cdc_acm 2-1.2:1.0: ttyACM0: USB ACM device [6103.098228] cdc_acm 2-1.2:1.2: ttyACM1: USB ACM device [6103.116769] cdc_acm 2-1.2:1.4: ttyACM2: USB ACM device [6103.132688] cdc_acm 2-1.2:1.6: ttyACM3: USB ACM device [6103.145157] cdc_acm 2-1.2:1.8: ttyACM4: USB ACM device [6103.163705] cdc_acm 2-1.2:1.10: ttyACM5: USB ACM device [6103.182338] cdc_acm 2-1.2:1.12: ttyACM6: USB ACM device

Cooтветственно, в данном случае 3G модем подключен к портам /dev/ttyACM0 - /dev/ttyACM6.

Отправка АТ-команд

Пар	аметры соеді	инения по умолчанию
Значение	Параметр	Описание
Auto- bauding	Baud rate	Скорость, бит/с. В настройках программы подключения установите 115200. После подключения — отправьте модему АААААААТ и он определит скорость автоматически.
8	Data bits	Количество битов данных
None	Parity	Бит чётности
1	Stop bits	Количество стоповых битов
Off	Hardware flow control	Аппаратный контроль потока
Off	Software flow control	Программный контроль потока

Отправка АТ-комманд для модема в терминале программы minicom

Для работы в интерактивном режиме рекомендуем использовать утилиту minicom:

- 1. Подключитесь к контроллеру по SSH.
- 2. Перезапустите модем командой:

wb-gsm restart_if_broken

3. Подключитесь к модему через minicom:

minicom -D /dev/ttyGSM -b 115200 -8 -a off

о параметрах командной строки читайте в статье о minicom.

4. Введите команду ААААААААТ — с её помощью модем распознает скорость, с которой мы к нему обращаемся и ответит 0К.

Модем готов к передаче АТ-команд.

Чтобы закрыть minicom, нажмите на клавиатуре клавиши Ctrl+A, затем клавишу X и подтвердите выход клавишей Enter.

Работа с sms и ussd

Работать с sms и ussd проще всего при помощи программы <u>Gammu (http://wammu.eu/</u>gammu/) (это форк утилиты gnokii, которую перестали развивать).

Полную документацию смотрите на сайте проекта, ниже дана краткая инструкция.

Настройка

Все контроллеры WB6, начиная с 2018 года, поставляются с уже настроенной утилитой gammu. Если gammu не настроена, то можно выбрать один из 2-х способов настройки:

Обновить пакет wb-configs. Для этого, нужно выполнить команды

apt update && apt install wb-configs

- Настроить gammu вручную:
- 1. Выполнить команду

gammu-config

- В параметре Port укажите /dev/ttyXXX файл модема, соответствующий вашей модели контроллера.
- 3. В параметре Connection укажите at115200

C Connection	(at11	5200)
M Model D Synchroniz F Log file	e time () ()	
0 Log format L Use lockin G Gammu loca	(noth g () lisation ()	ing)
6 Gammu loca	lisation ()	

Примеры команд gammu

Настройка gammu вручную (*gammu- config*)

Перед использованием утилиты убедитесь, что соединение с интернетом по протоколу ррр завершено (см. раздел Интернет через РРР)

\$ gammu networkinfo # посмотреть сеть и базовую станцию, к которой вы подключены \$ gammu geteachsms # вывести все SMS \$ gammu getussd '#100#' # запросить баланс на MTC в транслите \$ gammu sendsms TEXT +79154816102 -unicode -text 'Привет' # отправить на номер сообщение с текстом

SMS и USSD на русском

SMS и USSD на русском в *gammu* пока работают не всегда хорошо, поэтому могут пригодиться команды для переключения языка USSD и перекодирования входящих и исходящих SMS в транслит:

Oronoron	USSD		SMS		
Oneparop	транслит	русский	транслит	русский	
МТС	*100*6*2#	*100*6*1#	неизвестно	неизвестно	
Мегафон	*105*0#	*105*9#	неизвестно	неизвестно	
Билайн	*111*6*2#	*111*6*1#	неизвестно	неизвестно	
T7	↓1 ∩ ∩ <i>μ</i>	↓1 ∩ ∧↓1 <i>⊥</i>			

теле∠	^1ZU#	^1ZU^1#	неизвестно	неизвестно
-------	-------	---------	------------	------------

Для надежной отправики SMS на русском надо проверить локаль и установить LC ALL=ru RU.utf8

SMS-уведомления

Отправка sms-уведомлений об изменении состояния какого-либо устройства реализована в ПО Wiren Board с помощью сервиса уведомлений. Также можно отправлять SMS из движка правил wb-rules, вызывая соответствующую функцию. Подробнее в статье « Модуль уведомлений».

Интернет через РРР

Настройка интернета через PPP с помощью 2Gмодема

Быстрый выход в интернет

Настройки быстрого подключения сбрасываются после перезагрузки контроллера. Если вам нужен постоянный доступ к интернету — настройте автоматический запуск подключения.

В стандартное ПО контроллера входят настройки подключения для операторов МТС, Мегафон и Билайн по протоколу ppp. Если вы пользуетесь одним из них, то для быстрого подключения к интернету нужно перезапустить модем и подключится с использованием одной из настроек:

1. Перезапустите модем:

wb-gsm restart_if_broken

2. Установите соединение, например, для оператора МТС:

pon mts	
mts можно заменить на megafon или beeline — зависит от вашего операто связи.	ра

3. Если соединение больше не нужно — вы можете его завершить командой:

poff mts

Если на контроллере установлен модуль 3G- или 4G-модем, то для увеличения пропускной способности соединения, демону pppd нужно указать другой порт. Для этого в файле /etc/ppp/peers/<ваш_провайдер_связи> замените устройство /dev/ttyGSM на /dev/ttyACM0.

Например, изменим порт для провайдера МТС:

1. Откройте файл /etc/ppp/peers/mts

-----mcedit /etc/ppp/peers/mts L_____

2. Закомментируйте старый порт и добавьте новый:

	1
¦ #/dev/ttyGSM	:
	:
i	

3. Сохраните изменения и закройте файл.

Порт /dev/ttyACMO появляется автоматически после включения модема командой wb-gsm on.

Автоматический запуск подключения

Чтобы автомат	подключение ически:	запускалось	auto eth0 liface eth0 inet dhcp pre-up wb-set-mac hostname WirenBoard
1. Откр для р	ойте файл /etc/network редактирования:	/interfaces	allow-hotplug eth1 iface eth1 inet dhcp pre-up wb-set-mac hostname WirenBoard
	<pre>mcedit /etc/network/interfaces</pre>		## The gsm pptp interface ## vvv uncomment block to enable
2. Раско след	омментируйте или отред ующие строки:	актируйте	auto ppp0 iface ppp0 inet ppp ## select provider: megafon, mts or beeline below provider mts #pectaptyem модем, если он завис pre-up wb-gsm restart if broken #Затем ждем, пока он загрузится и найдет сеть. pre-up sleep 10
	auto ppp0 iface ppp0 inet ppp provider mts # можно заменить mts на megafon или beeline #перезапускаем модем, если он завис pre-up wb-gsm restart_if_broken #Ждем, пока он загрузится и найдет сеть. pre-up sleep 10		Файл <i>/etc/network/interfaces,</i> автоматически запускающий подключение к МТС

- 3. Сохраните изменения и закройте файл.
- 4. Теперь запустите интерфейс ppp0 командой:

^{іfup ppp0} через 10-15 секунд интерфейс ppp0 будет доступен.

5. Настройка завершена, теперь при перезагрузке контроллера подключение к интернету восстановится автоматически.

Параметры протокола пакетной передачи данных и номера для соединения для каждого провайдера хранятся в директории /etc/chatscripts. В большинстве случаев ничего менять в этих файлах не придется.

Для ppp-интерфейсов существуют директории, исполняемые файлы из которых также запускаются на paзных фазах установления соединения. Но, если, например, для ethernet-интерфейсов эти скрипты должны находиться в директориях /etc/network/if-down.d, if-post-down.d, if-pre-up.d, if-up.d, то соответствующие директории для ppp-интерфейсов находятся в /etc/ppp/ip-down.d, ip-up.d и т.п. Подробнее об их назначении и функционировании можно узнать в документе <u>PPP</u> HOWTO (http://citforum.ru/operating_systems/linux/HOWTO/PPP-HOWTO.shtml).

Автоматическое восстановление подключения

Скрипт позволяет восстановить интернет-соединение после сбоя. Пример автоматического запуска скрипта можете посмотреть в статье про WiFi

```
#!/bin/sh
echo -----
echo WAN CONTROLL RESTART
echo -----
PINGRESORCE1="ya.ru"
PINGRESORCE2="google.com"
if (! ping -g -c3 ${PINGRESORCE1} > /dev/null 2>&1)
then
if (! ping -q -c3 ${PINGRESORCE2} > /dev/null 2>&1)
then
wb-gsm restart_if_broken
else
echo 'internet ok'
fi
else
echo 'internet ok'
fi
```

Резервирование канала связи

Особенности резервирования выхода в интернет описаны в статье Сетевые настройки контроллера.

Интернет с 4G-модемом (LTE)

Настройка модема $\underline{\rm WBC-4G}$ на контроллере Wiren Board 6.7.2

Настройка модема как сетевой

карты

В отличие от 2G- и 3G-модулей, <u>WBC-4G</u> поддерживает выход в интернет через виртуальную сетевую карту по протоколу RNDIS.

Настройка с помощью minicom:

- 1. Убедитесь, что модем правильно сконфигурирован. Подробнее смотрите на странице модуля WBC-4G.
- 2. Подключитесь к контроллеру по SSH.
- 3. Перезапустите модем командой:

wb-gsm restart_if_broken

4. Подключитесь к модему через minicom:

minicom -D /dev/ttyGSM -b 115200 -8 -a off О параметрах командной строки читайте в <u>статье о minicom</u>.

Отправка АТ-комманд для модема в терминале программы minicom

felcome to minicom 2.7		
PTIONS: Il8n		
ompiled on Apr 22 201		
ort /dev/ttyGSM, 09:4	17:47	
ress CTRL-A Z for hel	lp on spt	
	Leave Minicom?	
T+DIALMODE=0	> Yes No	
K T+CGDCONT=1."IP"."int	ernet.mts.ru"	+
K T+CGDCONT=1,"IP","int K	ernet.mts.ru"	+
K T+CGDCONT=1,"IP","int K T+CGCONTRDP	ternet.mts.ru"	+
K T+CGDCONT=1,"IP","int K T+CGCONTRDP CGCONTRDP: 1,5,"mts.m	ernet.mts.ru" anc001.mcc250.gprs","10.82.1	
K T+CGDCONT=1,"IP","int K T+CGCONTRDP CGCONTRDP: 1,5,"mts.m K	**************************************	* 26.218","","217.74.244.4","217
K T+CGDCONT=1,"IP","int K T+CGCONTRDP CGCONTRDP: 1,5,"mts.m K	rernet.mts.ru" anc001.mcc250.gprs","10.82.1	+ 126.218","","217.74.244.4","217
K T+CGDCONT=1,"IP","int K T+CGCONTRDP CGCONTRDP: 1,5,"mts.m K	:ernet.mts.ru" anc001.mcc250.gprs", "10.82.1	 126.218","","217.74.244.4","217
K H-GGDCONT=1,"IP","int K H-GGCONTRDP CGCONTRDP: 1,5,"mts.m K	ernet.mts.ru" anc001.mcc250.qprs",*10.82.1	, 26.218","","217.74.244.4","217
K H-GGDCONT=1,"IP","int K T+CGCONTRDP CGCONTRDP: 1,5,"mts.n K	ernet.mts.ru" nnc001.mcc250.gprs","10.82.1	

Выход из программы minicom

- Введите команду ААААААААТ с её помощью модем распознает скорость, с которой мы к нему обращаемся и ответит 0К.
- 6. Отправьте из терминала minicom АТ-команды для модема:
 - Настроить автоматическое подключение: AT+DIALMODE=0.
 - Установить APN: AT+CGDCONT=1, "IP", "xxx", где xxx точка подключения (APN). Имя точки подключения зависит от оператора, например, у МТС она выглядит так: internet.mts.ru.
 - Проверить получение IP адреса: AT+CGCONTRDP.
- 7. Закройте minicom, для этого нажмите на клавиатуре клавиши Ctrl+A, затем клавишу X и подтвердите выход клавишей Enter.

После этого интернет будет доступен через интерфейс usb0, который можно настроить как обычную сетевую карту.

Настройка с помошью chat:

- 1. Убедитесь, что модем правильно сконфигурирован. Подробнее смотрите на странице модуля WBC-4G.
- 2. Подключитесь к контроллеру по SSH.
- 3. Перезапустите модем командой:

_____ wb-gsm restart_if_broken

4. Замените в строке ниже APN_INTERNET на точку подключения вашего провайдера, вставьте изменённую строку консоль контроллера и нажмите на клавиатуре Enter:

```
PORT=/dev/ttyGSM; /usr/sbin/chat -s TIMEOUT 20 ABORT "ERROR" ECHO ON "" "AAAAAAAAAAAAAAT" OK
    "AT+CMGF=1" OK "AT+DIALMODE=0" OK "AT+CGDCONT=1,\"IP\",\"APN_INTERNET\"" OK "AT+CGCONTRDP" "OK" >
    $PORT < $PORT</pre>
```

Этот способ можно использовать при написании скриптов.

Настройка виртуальной сетевой карты

После того как мы настроили модем, нужно настроить виртуальную сетевую карту:

1. Откройте файл /etc/network/interfaces:

nano /etc/network/interfaces

2. Добавьте в него строки:

	auto usb0 allow-hotplug usb0 iface usb0 inet dhcp pre-up wb-gsm restart_if_broken pre-up sleep 10	
a	втоматически запускать модем, интерфейс и получать IP-адрес.	i

3. Сохраните и закройте файл interfaces, для этого нажмите клавиши Ctrl+O,

затем Enter и Ctrl+X.

4. Запустите интерфейс командой:

	1
ifun ushA	
1100 0000	
	i

Настройка завершена, теперь модем по DHCP назначит контроллеру IP-адрес в подсети 192.168.0.1, а после перезагрузки контроллера соединение с интернетом восстановится автоматически.

Мультиплексирование

Модем поддерживает режим мультиплексирования — создания виртуальных портов, через которые можно одновременно работать с модемом. Например, через один порт можно открыть сессию PPP для GPRS, а через другой — получать и отправлять SMS, проверять баланс и т.д. Подробнее смотрите <u>CMUX</u>. Этот режим не поддерживается для 2G-модемов.

Документация на модемы

Модель	Режимы сети	краткое описание	hardware design	АТ-команды
SIM800	2G	pdf (http://www.mt-syst em.ru/sites/default/file s/documents/sim800_s pec_20140423.pdf)	pdf (http://www.mt-syste m.ru/sites/default/files/d ocuments/sim800_hardw are_design_v1.10.pdf)	pdf (http://www.mt-system.r u/sites/default/files/docume nts/sim800_series_at_comm and_manual_v1.12.pdf)
SIM5300E	2G/3G	pdf (http://www.mt-syst em.ru/sites/default/file s/documents/sim5300e _spec_v1611_rus_0.pdf)	pdf (http://www.mt-syste m.ru/sites/default/files/d ocuments/sim5300e_har dware_design_v1.09.pdf)	pdf (http://www.mt-system.r u/sites/default/files/docume nts/sim5300e_at_command _manual_v1.01.pdf)
SIM7000E	2G/NB- IOT	pdf (http://www.mt-syst em.ru/sites/default/file s/documents/sim7000e _spec_v1706_rus.pdf)	pdf (http://www.mt-syste m.ru/sites/default/files/d ocuments/sim7000_hard ware_design_v1.07.pdf)	pdf (http://www.mt-system.r u/sites/default/files/docume nts/sim7000_series_at_com mand_manual_v1.06.pdf)
7600E	2G/3G/4G	WBC-4G	·	·

GPRS на модемах SIM7000E 2G/NB-IoT

Модем SIM7000E 2G/NB-IoT по умолчанию настроен на автоматический выбор GSMи LTE-сетей. Однако, в сети или с SIM-картой без поддержки NB-IoT модем не регистрируется в сети GSM (GPRS). Для того, чтобы модем смог зарегистрироваться в сети GSM, необходимо принудительно перевести его в режим GSM only.

В терминальном режиме работы с модемом, например, в программе minicom (смотрите раздел Отправка АТ-команд), введите команду выбора режима:

AT+CNMP=13

Возможные варианты значений (команда AT+CNMP=?):

- 2 Automatic,
- 13 GSM Only,
- 38 LTE Only,
- 51 GSM And LTE Only.

Установить режим нужно один раз — он запоминается и активен даже после отключения питания.

Чтобы вернуться в режим ІоТ, выполните команду:

AT+CNMP=51

RS-485

Contents

Описание

Как правильно проложить шину

Добавление устройства в веб-интерфейс

Как ускорить опрос устройств

Работа с портом RS-485 контроллера из собственного ПО

Описание

RS-485 — стандарт коммуникации по двухпроводной шине.

Теоретически на шину можно подключать до 256 устройств. Длина линии может быть до 1200 метров, но она сильно влияет на скорость передачи данных.

Энциклопедия АСУ ТП. Интерфейс RS-485 (https://www.bookasutp.ru/Chapter2_3.aspx) — подробно про работу интерфейса.

В устройствах Wiren Board используется <u>Протокол Modbus</u> поверх RS-485. Пожалуйста, ознакомьтесь с ним для лучшего понимания работы устройств.

Максимальная скорость передачи данных в периферийных устройствах Wiren Board — до 115 200 бит/с.

Как правильно проложить шину

В статье RS-485:Физическое подключение описано как правильно проложить шину.

Добавление устройства в веб-интерфейс

<u>RS-485:Настройка через веб-интерфейс</u> — что сделать для появления устройства в веб-интерфейсе контроллера.

Как ускорить опрос устройств

Для ускорения опроса устройств по шине RS-485 рекомендуем:

- 1. Увеличить скорость обмена до 115200 бит/с. На разумных длинах и топологии сети все должно нормально работать. Если на шине есть устройства, не поддерживающие эту скорость, см. пункт 3.
- 2. Отключить через веб-интерфейс в настройках устройства ненужные каналы.
- 3. Разделить устройства по типам и портам, контроллере 2 порта RS-485 и еще 3 можно добавить модулями расширения:
 - Устройства, не поддерживающие скорость 115200, подключите отдельно.
 - Счетчики МАР так же подключите отдельно или с оборудованием, не требующим быстрой реакции. В счетчиках очень много параметров, опрос идет медленно.
 - При большом количестве устройств разделите их на несколько портов. При прочих равных скорость вырастет кратно количеству портов.

Работа с портом RS-485 контроллера из собственного ПО

- Стандартно в Wiren Board с подключёнными по RS-485 устройствами работает <u>Драйвер wb-mqtt-serial</u> (ранее *wb-homa-modbus*). Он позволяет работать с подключёнными устройствами RS-485 через систему <u>MQTT</u>-сообщений.
- Если вы хотите работать с портом RS-485 напрямую, не используя этот драйвер отключите его, иначе он будет писать в порт RS-485.
- Работа с последовательным портом из Linux
- Доступ к порту RS-485 контроллера Wiren Board с компьютера
- Настройка параметров обмена данными по RS-485 для modbus-устройств Wiren Board

Debug UART

Возможно, для специалистов это будет излишним, но я думаю,что можно привести ссылки на документацию по началу работы с Debug UART и описать, зачем вообще это нужно. Быстрый поиск в интернете меня не удовлетворил.

1-Wire

Купить датчик температуры DS18B20 1-Wire (https://wirenboard.com/ru/produ ct/1wire-DS18B20/)

Contents

Подключение

Подключение по трём проводам Подключение по двум проводам Прокладка шины 1-Wire

Поддержка в ПО

Полезные ссылки

Самый популярный температурный датчик 1-Wire — DS18B20, установленный в герметичном корпусе. Купить (https://wirenboard.com/ru/pro duct/1wire-DS18B20/)

Подключение

В контроллере уже есть резистор 3 кОм подтяжки между шиной Data и VCC — внешний резистор не нужен.

Подключение по трём проводам

Датчик имеет три вывода. Их цвета могут меняться от модели к модели, желательно найти документацию на свою модель.

Сигнал	Клеммник	Цвет: модель 1	Цвет: модель 2	Цвет: модель З	
Vdd (VCC.		V	V	V	

Подключение датчика 1-Wire к контроллеру Wiren

питание)	+5V OUT	красныи	красныи	красныи
GND (земля)	GND	Чёрный	Чёрный	Желтый
DQ (DATA, данные)	1W	Синий	Жёлтый	Зелёный

Подключение по двум проводам

Соедините контакты питания и земли датчика и подключите их к земле контроллера. При таком подключении датчик будет брать питание с канала данных.

Этот способ не рекомендуется, особенно для подключения нескольких датчиков: тока с линии данных может не хватить для всех датчиков, к тому же замедляется опрос — время тратится на зарядку внутренних емкостей датчиков напряжением от линии данных.

Прокладка шины 1-Wire

Количество возможных датчиков и надежность их работы зависит от длины шины, её топологии и кабеля.

Обычно в домашних условиях надежно работает до 20 датчиков по 5 метров кабеля, соединенных звездой.

Основной документ при проектировании шины — инструкция (https://www.maximinte grated.com/en/app-notes/index.mvp/id/148) от разработчика 1-Wire. Основные тезисы:

- Длина шины при подключении одного датчика до 200 метров.
- При подключении нескольких датчиков, подключайте их к питанию 5 В (не используйте двухпроводную схему).
- Прокладка линии одной шиной лучше, чем прокладка звездой.
- Для прокладывания длинной шины или в условиях повышенных помех (например, в щитке) — используйте витую пару, например, Cat 5, лучше экранированную.

Подключение по витой паре — это сигнал по одной жиле пары, земля по второй и аналогично питание: плюс питания по одной жиле пары, минус по второй. Минус питания соединить с сигнальной землёй. Экран с одной стороны соединить с минусом питания.

Поддержка в ПО

Значения датчика транслируются в очередь сообщений <u>MQTT</u> драйвером <u>wb-mqtt-w1</u> (https://github.com/wirenboard/wb-homa-w1).

mp-m1	28-800008ex2x08	temperature	/devices/wb-w1/controls/25-000005es2ad9	29.942	
					_

MQTT-топик и идентификатор датчика в разделе *Settings* веб-интерфейса

Показания датчика и его уникальный идентификатор на странице *Devices* веб-интерфейса

После подключения датчиков к контроллеру значения с датчиков сразу появятся в <u>веб-интерфейсе</u>. Если к контроллеру подключены несколько датчиков, они будут различаться своими идентификаторами. Идентификаторы присваиваются датчикам на заводе, и содержат тип устройства, номер и контрольную сумму.

Полезные ссылки

Поддерживаемые контроллером Wiren Board протоколы, устройства и системы верхнего уровня			
Поддерживаемые протоколы			
Опрос датчиков и работа с устройствами (в базовой комплектации)	<u>1-Wire</u> • DLMS/COSEM • <u>Modbus RTU/TCP Master</u> • <u>ГОСТ МЭК</u> 61107 • <u>СПОДЭС (ГОСТ Р 58940-2020)</u>		
Опрос датчиков и работа с устройствами (с помощью модулей расширения)	KNX • eBUS • OpenTherm • Z-Wave • Zigbee		
Системы верхнего уровня	$\frac{\text{KNX} \bullet \text{Modbus RTU/TCP Slave} \bullet \text{MQTT} \bullet \text{OPC UA} \bullet \text{SNMP} \bullet \text{Zabbix} \bullet}{\text{M3K } 104} \bullet \text{SmartWeb}$		
ПО верхнего уровня	Grafana • MasterSCADA • Nagios • Rapid SCADA • SAYMON • Zabbix • IntraSCADA • IntraHouse • IRidium Server		
Протестированн	ые устройства сторонних производителей		
Датчики климата	DS18B20 и клоны • Kvadro 1WIRE-RS485 • RLDA NL-3DPAS-M • RLDA NL-1S111 • Wellpro WP3066ADAM • РД MSU21 • РД MSU24 • РД MSU34+TLP • РД MSU34+THLP • Эксис ИВТМ-7 М 3		
Датчики уровня	ЭСКОРТ ДБ-2		
Диммеры	Шлюз DALI GW2 • Philio PAD07-RU • Uniel UCH-M131RC/0808 • Uniel UCH-M141RC/0808 • РД DDL04R • РД DDL24 • РД DDL84R-V • РД DDM845R		
Конвекторы	Varmann QTherm		
Кондиционеры	Haier YCJ-A002 • Z-Wave ИК-передатчик PAR01-RU		
Контроллеры вентиляции и климата	Mautomatics JL204C5 (Breezart 550 Lux) • GTC (General Thermo Controllers) Syberia 5.0 • SystemAir VR 300		
Контроллеры холодильного оборудования	Carel BASIC(PYEZ)/EASY(PJEZ) • Danfoss EKC 204A1 / AK-CC 210 • Danfoss EKC 202B • Danfoss EKC 202D • Danfoss ERC 211/ERC 213/ERC 214 • Eliwell IDPlus 974		
Метеостанции	Netatmo Urban Weather Station		
Модули ввода-вывода	Wellpro WP8026ADAM • Wellpro WP8027ADAM • Wellpro WP8028ADAM • Wellpro WP9038ADAM		
Модули реле	РД DRB88 • Rubetek TZ78 • ICP DAS tM-P3R3 • ICP DAS LC-103 • Uniel UCH-M111RX/0808 • Uniel UCH-M121RX/0808		
Моторы для штор/Электрокарнизы	Akko AM82 • Dooya DT82 • WinDeco • Somfy SDN • SunFlower KT82TV • Somfy RS485 RTS transmitter		
Преобразователи частоты	Vacon/Danfoss 10 • Danfoss VLT Microdrive FC51 • T13-400W-12-H		
Счётчики воды	Пульсар • Пульсар-М • Элехант СВД-15 • Элехант СВД-20 • Счётчики с импульсным выходом		
Счётчики тепла	Пульсар		
	CSQ PD561Z-9SY • Peacefair PZEM-016 • Eastron SDM120M • Eastron SDM220M • Меркурий 200 • Меркурий 201 •		

Счётчики электроэнергии	Меркурий 203.2Т • Меркурий 204 • Меркурий 206 • Меркурий 208 • Меркурий 230 • Меркурий 231 • Меркурий 234 • Меркурий 236 • Меркурий 238 • Милур 104 • Милур 105 • Милур 107 • Милур 305 • Милур 307 • Нева МТ 113 • Нева МТ 123 • Нева МТ 124 • Нева МТ 323 • Нева МТ 324 • Энергомера CE301 • Энергомера CE102M • Энергомера CE303 • Энергомера CE308				
Термостаты	BAC-6000 Series • BHT-6000 Series • Cityron ПУ-3 (Modbus) • Heatit Z-TEMP2 • Hessway • Siemens RDF302				
Увлажнители	CAREL Humisonic				
Прочее	DIY • Shelly UNI • Tasmota • ESPHome				
Устройства	Устройства с аналоговым или цифровым выходом				
Низковольтная нагрузка	Реле с управляющим напряжением 12-24 В • Светодиоды • Низковольтные вентиляторы • Низковольтные сигнальные лампы				
Датчики с аналоговым выходом	Датчики температуры, давления и другие, имеющие на выходе ток или напряжение				
Счётчики с импульсным выходом	Счётчики электроэнергии, воды, тепла и другие с импульсным выходом				
Устройства с выходом «открытый коллектор»	Устройства с выходом «открытый коллектор»				

ADC

- English
- русский

Как получить напряжение с АЦП

- 1. Напряжение должно быть в диапазоне допустимых значений.
- Клеммники Ах выполняют две функции: АЦП и управление низковольтной нагрузкой. Перед измерением напряжение, поставьте соответствующий выход управления низковольтной нагрузкой в положение "выключено". Например, если вы подключаетесь к клемме А1, выключите в веб-интерфейсе A1_OUT (раздел Relays & FETs).
- 3. Подключите ваш источник к клемме. Значение напряжения сразу появится в <u>веб-интерфейсе</u>, в устройстве ADCs. Также значение транслируется в систему сообщений <u>MQTT</u>.

Также значение можно получать в ручном режиме: Низкоуровневая работа с ADC.

Входное напряжение

Демон wb-homa-adc транслирует значение в очередь сообщений MQQT в топик /devices/wb-adc/controls/Vin . Таким образом, значение отображается в вебинтерфейсе как канал Vin устройства ADCs

Список АЦП для контроллера WB6

В Wiren Board 6 каналы АЦП процессора подключены к клеммникам А1-А4. Также на АЦП заведено входное напряжение (после входных диодов) и напряжение на клемме 5Vout.

См. Wiren Board 6.2: Peripherals#Каналы АЦП

Списки АЦП для старых версий контроллера

Зуммер (звуковой излучатель)

Contents

Описание

Управление из веб-интерфейса

Управление из движка правил

Управление из python

Низкоуровневая работа

О ШИМ и пересчёт параметров Номер pwm-порта для sysfs Работа из sysfs

Описание

Контроллер Wiren Board имеет на борту Зуммер (звуковой излучатель). Зуммер питается от 5В и управляется ножкой gpio процессора в режиме ШИМ. Управлять зуммером можно через sysfs-интерфейс ядра и различное ПО поверх него. Сейчас реализовано управление из веб-интерфейса, движка правил wb-rules и python.

Управление из веб-интерфейса

В веб-интерфейсе контроллера управление зуммером доступно во вкладке "Devices". Параметр "Frequency" - частота звука в Гц. "Volume" - громкость (в условных единицах, шкала линейная). Параметры сохраняются при перезагрузке контроллера.

Управление зуммером

Управление из движка правил

Управление зуммером, выведенное в веб-интерфейс - это виртуальное устройство, созданное системным правилом wb-rules при старте контроллера. Исходный код правила доступен на нашем github (https://github.com/wirenboard/wb-rules-system/blo b/master/rules/buzzer.js).

О том, для чего нужны виртуальные устройства, можно узнать подробнее в описании движка правил.

Системное правило внутри реализует пересчёт тональности и громкости (см раздел о пересчёте) и работу с pwm через sysfs (см соответствующий раздел). Наружу пользователю доступно устройство *"buzzer"*, имеющее несколько mqtt-контролов:

Device	Control	Тип	Максимальное значение	Описание
	Frequency	Range	7000	Частота звука
Buzzer	Volume	Range	100	Громкость, %
	Enabled	Switch		Включение/отключение

Контролы устройства можно использовать в собственных правилах. Подробнее о структуре mqtt-топиков виртуальных и физических устройств можно узнать из нашей mqtt-конвенции (https://github.com/wirenboard/conventions/blob/main/README.md).

Управление из python

На контроллерах Wiren Board работать с зуммером можно из python с помощью модуля *beeper* из пакета *wb_common*. Это обёртка вокруг интерфейса sysfs. Модуль предустановлен на все контроллеры в составе deb-пакета *python-wb-common*. Исходный код доступен на нашем github (https://github.com/wirenboard/wb-common/bl ob/master/wb_common/beeper.py).

Пример работы из python:

```
from wb_common import beeper
beeper.beep(0.5, 2)
```

Поддерживаются все настройки sysfs-интерфейса (пересчёт нужно проводить вручную; см раздел о пересчёте).

Низкоуровневая работа

О ШИМ и пересчёт параметров

ШИМ (PWM) - это распространённый способ управления мощностью, подаваемой к нагрузке.

В контексте управления зуммером, нас интересуют 2 параметра PWM:

 Коэффициент заполнения (duty cycle) влияет на громкость звука. Обычно, считается в процентном соотношении от периода сигнала.

Duty cycle управляет яркостью светодиодов / громкостью Зуммера

 Частота PWM (frequency) - влияет на высоту звука (чем выше частота, тем выше и звук). Единица, обратная периоду сигнала.

Ядро Linux предоставляет интерфейс sysfs для pwm, который принимает частоту pwm и duty cycle в **наносекундах (10⁻⁹C)**! Поэтому, для низкоуровневого управления Buzzer'ом нужно производить пересчёт желаемой частоты из kHz в период в наносекундах по формуле: **T(ns) = 1 000 000 / f(kHz)**

Номер pwm-порта для sysfs

Ножка gpio настраивается, как выход PWM в dts ядра linux. Подробнее можно посмотреть [на нашем github (https://github.com/wirenboard/linux/blob/ef2d87e222b365 848fe7262c022ca887b6449432/arch/arm/boot/dts/imx6ul-wirenboard61.dts#L495)].

Для контроллеров WB6.X.X номер порта = 0,(для всех контроллеров до WB6.X.X номер порта = 2)

•	Номер порта можно узнать, выполнив команду	
	echo \$WB_PWM_BUZZER	

Во всех примерах далее будем считать, что номер pwm-порта = 0.

Работа из sysfs

Для работы с pwm через sysfs нужно:

1.	Экспортировать порт
	echo 0 > /sys/class/pwm/pwmchip0/export
2.	После этого появляется директория /sys/class/pwm/pwmchip0/pwm0 Записать период pwm в наносекундах
	echo 250000 > /sys/class/pwm/pwmchip0/pwm0/period # устанавливаем период в 250 000 нс, т.е. в 250мкс, что соответствует частоте 4кГц
3.	Записать громкость (пересчитав из duty-cycle)
	echo 125000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle # максимальная громкость достигается при duty_cycle = period / 2 => устанавливаем duty_cycle в 125 000 нс
4.	Включить выход РWM
	echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable
Π-	

Для выключения зуммера, нужно записать 0:

Пример bash-скрипта для работы с pwm (https://github.com/contactless/wirenboar d/tree/master/examples/beeper)

Установка периода в наносекундах. Пересчёт из частоты (в килогерцах) в период (в наносекундах) производится по формуле: **Т(ns) = 1 000 000 / f(kHz)**

Power over Ethernet

- English
- русский

Купить в интернет-магазине

Power over Ethernet - название, объединяющее несколько стандартов подачи питания по кабелю Ethernet.

Wiren Board поддерживает так называемый Passive Power over Ethernet (Passive PoE) с напряжением в пределах номинального для контроллера. Питание передаётся по неиспользуемым парам кабеля Ethernet: "+" ("-") по паре 4-5 (синий, бело-синий), "-" ("+") по паре 7-8 (коричневый, бело-коричневый). Полярность не имеет значения.

Этот стандарт не совместим с распространёнными стандартами IEEE 802.3af и 802.3at, называющимися обычно просто Power over Ethernet.

Для подачи питания между роутером и контроллером ставится блок питания (инжектор), "добавляющий" питание в кабель Ethernet до контроллера. Желательно использовать инжектор с напряжением от 12 вольт и мощностью от 12 Вт.

Wiren Board 4/5/6 может быть одновременно запитано и по Passive PoE, и через штекер/ клеммники. Фактическое питание идет от источника с большим напряжением.

Примечание для контроллеров версий 2.8

и 3.5: по умолчанию устройства поставлялись без поддержки РоЕ. Версии с поддержкой РоЕ имоют надвина. Н. 1.6115 ANL на Ethernet раздёй

PoE Injector

PoE Injector

имеют надпись HLJ-6115ANL на Ethernet-разъёме. Подключение питания по Ethernet к Wiren Board без поддержки РоЕ (с надписью HanRun на Ethernet-разъёме) приведёт

к повреждению устроиства.

Retrieved from "https://wirenboard.com/wiki/Служебная:Print/"

- Privacy policy
- About Wiren Board
- Disclaimers
- -